
1

Some Useful
Engineering Strategies

Seth Teller
RSS II

16 November 2005

My Goals Today

• Discuss engineering from an
intellectual and practical standpoint

• Introduce a "toolkit" of ideas and
techniques that you can use in your
own engineering endeavors

• Solicit your own ideas about
useful engineering practices

2

Caveat Auscultator (Listener beware)

• Some of this material will be new
to you; some will be familiar
– It doesn’t hurt to hear things twice.

• Some things you will probably agree
with; some things you probably won't
–But surely you’re used to this by now.

What is Engineering?
• Engineering (n.) (Merriam-Webster Online)

– a : the application of science and mathematics
by which the properties of matter and the
sources of energy in nature are made useful to
people

– b : the design and manufacture of complex
products

• Do science, math, usefulness, and
complexity “capture” engineering?

3

What is Engineering?

• Engineering (n.)

The process of specifying, designing,
implementing, and validating physical
artifacts with a desired set of properties

(With “properties” construed broadly to
mean material attributes, rigid and artic-
ulated DOFS, appearance, behavior, …)

Process View

• Engineering is a Means …
–Specifying: describing what to make
–Designing: describing how to make it
– Implementing: realizing actual artifact
–Validating: convincing yourself (and

others) that artifact works as specified

• … to an End
–Namely: artifact with desired properties

4

Human View
• Engineers are people who:

–Conceive of and execute ways to
optimize an underspecified tradeoff
between possibly conflicting goals

• Subject to severe constraints:
–Natural: Laws of physics, i.e., reality
–Cultural: Legal system, mores, ethics …

Conception & Execution
• Conception:

–A mental model of artifact & constraints

• Execution:
–Putting the mental model into practice
–Observing whether it predicts behavior

under real-world conditions

5

Essence of Engineering …
• … Process is the (typically iterative)

–Formation of a mental model
– Implementation of a prototype artifact
–Observation of its behavior, leading to:

• Revision of designer’s operative mental model
• Revision of operative design or implementation
• (Or both)

• … Until desired behavior is achieved

Visualization & Inspection
• Idea: graphical analogue of printf

–Visually expose artifact’s internal state

(CSE Ohio State; CIS 680)

• Distinct from “algorithm animation”
–Rendering output of batch computation

?

6

Consequences
• If it “looks wrong” to you, two possibilities:

– A) Artifact state really is wrong, in which case:
• Artifact has deviated from your mental model
• You can find first place of deviation, and fix it

– B) Artifact state is correct, in which case:
• Your mental model made it “look wrong” to you
• Thus your mental model must be revised!

A C M K C E a b d a b C d E

• If it “looks wrong,” it’s an opportunity to
– Improve the system’s behavior, or
– Learn something, i.e., improve mental model!

… And if it looks correct?
• Is it correct?

• Sure, it often is. But that doesn’t mean
that it always is!

• Can boil these ideas down to an aphorism:
– “Don’t sweep anomalies under the rug.”

7

Self-Checking Code
• Idea: make machine work for you
• For each algorithm/module, write

a “checker” that inspects output
for the properties that it should have

• Convex hull example:
–Traverse output vertices in order;

check orientation of each triplet

• Same idea applies to input
–Postconditions (A) == Preconditions (B)

Distinction: JavaDocs
• JavaDocs comprise:

–Declarations
–Comments

• But teammates’ agreement to make
the code implement the intent
stated in the comments essentially
amounts to a social contract

} for some code corpus

8

Teammate-Checking Code
• Twist: for each module you write,

ask a teammate to write checker
• Multiple benefits:

–Validates your solution (as before)
–Decreases chance that checker succeeds

due to an invalid assumption (why?)
–Facilitates agreement of your mental

model with your teammate’s model
–Exploits a natural human characteristic:

competitiveness (s/he acts as adversary)

Adversary
• Someone/something that tries to

–Find holes in your correctness proof
(e.g. as A did for R & S of RSA security)

– Produce inputs that break your code
(e.g., by violating your assumptions)

– Produce conditions that break system
(more than just program’s formal input)

• Adversary can be a person, program,
or even a contrived environment

9

Adversary’s Strategies
• Generate challenging inputs …

– Exhaustively
– Randomly
– Qualitatively
– Deviously (e.g., provoke your teammate to do it)

• … and environmental conditions:
– Missing or mis-wired connectors
– Misbehaving sensors
– Depressed all-stop buttons
– Undefined environment variables
– Misconfigured networks, remote hosts, etc.

Benefiting from Adversary
• Implement a “state capture” facility

–Ensure that it is very easy to invoke
–… And that state can be reconstituted

• This makes misbehavior repeatable
• Gives rise to “defensive coding”

• Aphorism: “Chance favors the
prepared program”

10

Self-Reporting Code
• Useful when a subroutine might

legitimately succeed or fail
– Example: path planning among obstacles

• Notion of a “witness” from CS theory
community: consists of either a
–Checkably correct output solution, or an
– Input subset that “proves” infeasibility

of the specific input instance provided

Digression: Line Equations
• Points represented as p = (x, y, 1)
• Lines represented as L = (A, B, C)

–Defines “positive halfspace” L . P > 0
–Defines “negative halfspace” L . P < 0

y

x1

1

Line equation x + y = 1
x + y – 1 = 0
(1, 1, -1) . (x, y, 1) = 0

Thus L = (1, 1, -1)

L

p = (1, 1, 1)

p = (0, 0, 1)

Example:

11

Linear Separability
• Given point sets {Ai}, {Bi}, i in [1..N]
• Identify line L s.t. all Ai lie above L, all

Bi lie below L, or show no such L exists

L

Witness to Success Witness to Failure

Caution
• Make sure your checking, reporting,

witness etc. code has no side effects
that enable correct algorithm function

• Otherwise, when you remove or
suppress self-test, bugs will emerge

• Examples?

12

Self-Test Summary

• Pit code against itself.

• Aphorism: “Make function prove
itself before you trust it.”

Test Harness
• Battery of test cases applied to a

system to validate its responses

• We’ve seen these in “software only”
systems, with “softcopy only” inputs

• But what about robotics? How can
we validate sensors and actuators
using only software? … We can’t!

13

Robotics is Different!
• Robots are subject to “hard state”

fundamentally not under s/w control
• Consider e.g. all-stop button sense

question that arose last week
• Or, even harder: sensors. How to

force them to behave as you want?
• Actuators have same problem
• Real world is the only way to enforce

absolute consistency of env’t, state

Robotics Test Harness
• Place robot in a known environment

… so actions have known outcomes
• For concreteness, imagine harness for:

–Odometry
–Motor drivers
–Bump sensors
–Visual servoing
–Arm driver
–Brick storage

14

Self-Test Summary (2)

• Pit machine against environment.

• Aphorism (Feynman):
“You can’t fool Mother Nature.”

General Comments

• You’ve heard it all before
– “Think before you code”

• My variation on this:
– “Validate as you design and implement”

• Tangible benefits in rapidity of proto-
typing & achievable complexity while
retaining confidence in correctness

15

Your Ideas for Next RSS II

• How to promote rapid prototyping,
validation?

• More or better tools?

• In-class or in-lab exercises?

Your Ideas for Next RSS II

• How to prompt students to address
integration, end-to-end issues earlier?
–Example: systems group; great idea
–Move first integration even earlier?

• I.e., as soon as message formats published?

16

Summary

• Discussed engineering as an
endeavor

• Described several tools/methods for
validation and rapid prototyping

• Argued that “robotics is different”

