
1

Control Arbitration

Oct 12, 2005
RSS II

Una-May O’Reilly

Agenda
I. Subsumption Architecture as an

example of a behavior-based
architecture. Focus in terms of how
control is arbitrated

II. Arbiters and arbitration in general
III. Alternative (and more complex)

Arbiters

Creature, or Behavior-Based, AI

explore, survive

maintain goals

creatures -- live in messy worlds
performance relative to the world
intelligence (emerges) on this substrate

the creature all possible worlds

Photo courtesy of Rodney Brooks, MIT CSAIL.

Traditional Problem Decomposition

perception

m
odeling

planning

task execution

m
otor control

sensors actuators

a.

perception

m
odeling

planning

task execution

m
otor control

actuators

Horizontal decomposition

Behavior Based Decomposition

nouvelle

avoid hitting things

locomote

explore

build maps

manipulate the world

actuatorssensors

Vertical decomposition

How to Arbitrate

sensors actuators
•each layer has some perception, ‘planning’, and action

•rather than sensor fusion, we have behavior fusion

•fusion happens at the action command level on the right

•there is a question of what sort of merge semantics there should be

•Some kind of arbitration is required

?

2

Suitable for Mobile Robots
• Handles multiple goals via different

behaviors, with mediation, running
concurrently

• Multiple sensors are not combined but
complementary

• Robust: graceful degradation as upper
layers are lost

• Additivity facilitates easy expansion for
hardware resources

Eye Candy: Subsumption Robots

AllenTotoSeymour

Ghenghis Squirt

Herbert

Tom & Jerry

Photo courtesy of MIT MOBOT lab.

Subsumption Robots
• Allen: oldest, sonar-based navigation
• Tom and Jerry: I/R proximity sensors on

small toy car
• Genghis and Attila: 6-legged hexapods,

autonomous walking
• Squirt: 2 oz robot responding to light
• Toto: map-construction robot, first to use

Behaviour Language
• Seymour: visual, motion tracking robot
• Polly: robotic tour guide for the AI Lab

Subsumption Architecture
• Task achieving behaviors are represented

in separate layers
• Individual layers work on individual goals

concurrently and asynchronously
• No global memory, bus or clock
• Lowest level description of a behavior is

an Augmented Finite State machine

AFSM to represent behavior
• Augmented

– Registers, internal timer
• FSM: situation-action response:

– Considers sensor filter, trigger, commands out
• Input and output connections

– Suppressor
– Inhibitor

• External reset timer for
subsumption
• Later compiled via:

– Behavior language

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.Input
wires

output
wires

R

reset
suppressor inhibitor

Connecting behaviors
• Concept of wire with sources and destinations
• Principle is: transfer of information between

behaviors MUST be explicit in terms of
– Who can change the info (SOURCES)
– Who can access the info (DESTINATIONS)

• If connections are implemented as messages in
Carmen publish/subscribe framework, MUST
ensure abstraction violations of this sort are
avoided.
How?: design enforcement

3

Subsumption Architecture
one layer

Behavior D

Behavior C

Behavior B

Behavior A

Sensor 3

Sensor 2

Sensor 1

Actuators

Sensor 0

Behavior C

Behavior BS

i

i

SS

Suppressor node: eliminates lower level control signal and
replaces it with one from higher level. Suppression only
occurs when higher level is active.
Inhibitor node: eliminates lower level control signal without
any substitution

From p 94, Robot Programming, A Practical Guide to BB Robotics, Joseph L. Jones.

Subsumption Architecture:
multiple layers

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

From “A Colony Architecture for an Artificial Creature”, Jonathon Connell, MIT AI TR-1151.

Subsumption Architecture
• A (purely reactive) behavior-based method
• Sound-bites

– The world is its own best model
• No central world model or global sensor representations

– Intelligence is in the eye of the observer
– All onboard computation is important
– Systems should be built incrementally
– No representation. No calibration, no complex

computation, no high bandwidth computation
– Is there state in an AFSM?

• external timer “micro plan”..later removed
• Registers (variables), timer, sequence steps are quite

constrained by constraints of special purpose language

Using an External Timer
on the AFSM

• From Connell’s thesis:

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

From “A Colony Architecture for an Artificial Creature”, Jonathon Connell, MIT AI TR-1151.

Using an Internal Timer
Retriggerable monostable

• From Connell’s thesis:

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

• For responding to events rather than situations (time intervals)
• Triggering events sets mode to true and timer runs (memory latch)
• Timer expiration resets mode
• Reset upon use
• Outdated info is discarded like built-in watchdog timer that reboots at

regular intervals

From “A Colony Architecture for an Artificial Creature”, Jonathon Connell, MIT AI TR-1151.

Reconsidering some of the dogma
• Mataric’s Toto

– Plans as behaviors
– World model is

distributed, not
necessary consistent,
at different (task-
based) abstractions

• (Connell): State must
exist for exploitation
of history (as
memory), may help
choices

• Connell’s Herbert:
• More dogmatic about

(no) state and module
independence: all S
nodes with I’s as
applicability predicate
inside module

• Less dogmatic about
layers “soup” rather than
“stratified heap”

• Less dogmatic about
evolutionary progression
and hierarchy of priority

4

Herbert- J Connell

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

From “A Colony Architecture for an Artificial Creature”, Jonathon Connell, MIT AI TR-1151.

Subsumption Evaluated
Practically

• Robust
• Modular
• Easy to tune each behavior
• But

– Larger architectures are hard to decide
priorities for

– Robot may not take optimal path to goal

II. Arbitration in General

Collection Task Behavior Network

Escape

Dark-push

Anti-moth

Avoid

Home

Cruise

Bump force

Photocells

IR detectors

Arbiter Motor Controller

Left
Motor

Right
Motor

Sensing Intelligence Actuation

Find and push a puck

Backs up from walls

Prevents pushing in wrong direction

Drop puck at light

Orient to light source

From Robot Programming, Joseph L. Jones, McGraw-Hill, 2004

Our Collection Task
with Subsumption

From Robot Programming, Joseph L. Jones, McGraw-Hill, 2004

On Arbitration in General
• When to arbitrate:

– Eg. wander-behavior and recharge-behavior
• What to decide? Average, take turns, vote

• Use urgency
• Consider graceful degradation

5

Fixed Priority Arbitration
Behavior D

Behavior C

Behavior B

Behavior A

Sensor 3

Sensor 2

Sensor 1

Arbiter Motor Controller

Left
Motor

Right
Motor

Behavior B
Behavior C

Arbiter left

forward left back left

stop forward right

right back

Behavior A right back stop right forward rightleft

forward left right back stop forward right

1

2

3

4

From Robot Programming, Joseph L. Jones, McGraw-Hill, 2004

Multiple Arbiters

Behavior A

Behavior B

Behavior C

Behavior D

Behavior E

Behavior F

Behavior G Behavior I

Behavior H

Arbiter-1

Actuator-1 Actuator-2

Arbiter-2 Arbiter-3

Actuator-3

From Robot Programming, Joseph L. Jones, McGraw-Hill, 2004

Who has control?

Behavior D

Behavior C

Behavior B

Behavior A

Sensor 3

Sensor 2

Sensor 1

Arbiter Actuators

InControl: A

From Robot Programming, Joseph L. Jones, McGraw-Hill, 2004

Arbitration
• When is a variable

priority scheme better?
– Hard to say what happens

from code or behavioral
diagrams

– Debugging is tricky
– “With a well-reasoned

decomposition of the
problem, a fixed-priority
scheme can almost always
be engineered to
accomplish a given task”,
J. Jones, p 93.

• Making a variable
priority scheme work:
– Id all dynamic

conditions
determining priority
ordering

– How to ensure 2
different behaviours
NEVER have same
priority

– Lookout for conditions
leading to cyclic
priority reordering

From Robot Programming, Joseph L. Jones, McGraw-Hill, 2004

Behavior Collision
• How to handle

behavior collision
• A) just send the

control message
• B) ask for control and

wait for it
• C) keep sending

control message
while behavior is
triggered

• Subsumption uses c)
• Nodes have time

constants
• After a higher priority

message has been
channeled thru a node
(which never looks at its
content!), it does NOT
pass a message from a
lower priority input until
its timer expires

• Time constants are
tuned up experimentally

From Robot Programming, Joseph L. Jones, McGraw-Hill, 2004

Behavior Collision
• Often used:

– Each behavior sets a flag that the arbiter
reads (ie on control line to command
connection)

– Arbiter uses command of highest priority
which also has set flag

– Flag eliminates a repetitive send
– Eliminates complication of a new command

to turn off old

From Robot Programming, Joseph L. Jones, McGraw-Hill, 2004

6

Spiral development in RSS
• Vs subsumption’s incremental,

experimental approach
– Value is that the robot works “as expected” at

every stage
– Layers add more Supressors and Inhibiters

• Can a central arbiter have states where it
handles only subset of messages from
modules using it?

III. Alternative Arbitration Schemes Action Selection
• Behaviors have continuous activation levels
• Still only one behavior ever active at a time

– Aka “competitive” scheme
• “How to Do the Right Thing”, Pattie Maes,

Connection Science, vol 1, pp 291-323.
• Network of competence modules
• Set of states expressing binary condition
• Each behavior has list of

– [precondition states, post-true states, post-false states]

• System goals are states. Some are transitional
others are protected

Action Selection -2
• 2 Steps:

1. Build a decision network with conflicter, successor
and predecessor links

2. Energy spreading to determine active competence
module

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

From Thesis: An Overview of Behavioural-Based Robotics with Simulated Impleme
On an Underwater Vehicle, Marc Carreras I Perez,U. of Girona, , July 2000

Action Selection
Building the Decision Network

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

From Thesis: An Overview of Behavioural-Based Robotics with Simulated Implementatio
On an Underwater Vehicle, Marc Carreras I Perez,U. of Girona, , July 2000

Energy Spread and Activation
• Activation by states, goals and protected

goals
• Activation of successors, predecessor

and inhibition of conflicters
• Each cycle energy is modulated until a

global min/max is reached. Then choose
which module to activate:
– Passes threshold and is executable and has

highest energy of those that do
• This is difficult to design but easy to

execute once designed!

7

What about…
• Cooperative arbitration

– Examples exist:
• Motor Schemas by Ron Arkin

– Eg. Behaviors generate potential fields to indicate
direction robot should take

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.
QuickTime™ and a

TIFF (LZW) decompressor
are needed to see this picture.

• Process description Language
– Luc Steels, 1992. “The PDL Reference manual”,

Memo 92-5, VUB AI Lab

From Thesis: An Overview of Behavioural-Based Robotics with Simulated Implementation
On an Underwater Vehicle, Marc Carreras I Perez,U. of Girona, , July 2000

Debugging Arbitration
• Develop and test each behavior in turn
• The difficulty will lie in understanding and

managing the interactions between
behaviors

• Example: thrashing
• Set up a debug tool: indicated which

behavior is active, sensor values, state of
arbiter
– Could be tones or GUI

Primary Source Material
• Brooks, R. A. "A Robust Layered Control System for a Mobile

Robot", IEEE Journal of Robotics and Automation, Vol. 2,
No. 1, March 1986, pp. 14-23; also MIT AI Memo 864,
September 1985.

• Robot Programming: A Practical Guide to Behavior-based
Robotics, Joseph L. Jones, McGraw-Hill, 2004.

• The Behavior Language: User’s Guide, AI Memo 1227, April 1990.
• A Colony Architecture for an Artificial Creature, Jonathon Connell,

AI-TR 1151, MIT, 1989.
• Motor Schema Based Navigation for a Mobile Robot: An Approach

to Programming by Behavior, Ron Arkin, Proc of ICRA, 1987, pp
265-271.

• Behavior-based control: Main properties and
Implications, Maja Mataric, Proceedings, IEEE International
Conference on Robotics and Automation, Workshop on
Architectures for Intelligent Control Systems, Nice, France, May
1992, 46-54.

