Developing Software in Carmen
6.189/2.994/16.401

October 5th, 2005

3 Topics

= Writing New Modules
= Writing New Message Classes
= Writing Test Harnesses

State Machines

= You are used to thinking of programs like
this:

start_manipulatorQ);
brick_num = next c|nsest,bri:k():>

set_planner_goal (brick_num);
start_planner O:

= Instead, think of this: What causes
these transitions?

The Anatomy of a Module

= Initialize IPC Connection
= Create handlers
= Set subscriptions
= Dispatch
= Handle a message
= Do some work
= Update the internal state
= Go back to dispatching




The Anatomy of a Module

public class BrickFinder implements CameraHandler {
public void handleCanera (Cameralessage message) {
Systen.out.printin(“Please tell me the brick colour: *);
String colourName = System.in.readlineQ:
int bricks [] = processlmage(message, colourName);
BrickMessage msg = new BrickMessage(bricks);
msg.publishQ);

The Anatomy of a Message

package RSS; « Note that messages do not
implement standard interfaces.

import Carmen.*;

By convention, you should,
however, implement a
constructor, a message
subscription method and a
publication method.

public class MyMessage {
[MESSAGE FIELDS]
[MESSAGE NAME AND FORMAT]
[MESSAGE CONSTRUCTOR]
[INTERNAL MESSAGE HANDLER]
[MESSAGE SUBSCRIBE METHOD]
[MESSAGE PUBLICATION « Messages do, however, require a
METHOD] separate interface file to ensure

type-safe message handling

You could also support
query/response.

Y
5]

public class MyMessageHandler {

public void handleMy ye(My message) ;

The Anatomy of a Message

package RSS;
import Carmen.*;

public class BrickMessage {
public brickLocations[];
public int numBricks;
public double timestamp;
public char hostname[10];

« Public fields have to come
first in the message
declaration.

[MESSAGE NAME AND FORMAT] - Every message must have

a timestamp and hostname,
and by convention, they

must be the last two fields
[INTERNAL MESSAGE HANDLER] in the message.

[MESSAGE CONSTRUCTOR]

[MESSAGE SUBSCRIBE METHOD]

[MESSAGE PUBLICATION METHOD]

The Anatomy of a Message

package RSS;
import Carmen.*;

public class Brickilessage {
publ 't brickLocations[];
nt nunBricks;
double timestamp;
char hostname[10]:

private final static String MESSAGE_NAME = “CARMEN_BRICK_MESSAGE™;
private final static String MESSAGE_FMT = “{<int:2>,int,double, [char:10]}";

[MESSAGE CONSTRUCTOR]

[INTERNAL VESSAGE HANDLER]

» The message format string is
arcane, and easy to get wrong. Be
careful to keep your messages
simple.

[MESSAGE SUBSCRIBE METHOD]

[MESSAGE PUBLICATION METHOD]

* There is a formal definition in the
IPC manual linked off the wiki,




The Anatomy of a Message

package RSS;
inport Carnen.*;

public class Brickiessage {
publlic int brickLocations[]:
nt nunBricks;
double tinestanp;
public char hostnane[10];

private final static String NESSAGE_NAVE
private final static String MESSAGE_FUT =

RUEN_BRICK NESSAGE";

int:2>, int.double, [char 1013

public BrickMessage(int brickLocations[]) {
this.brickLocations = new int[brickLocations.length];
System.arraycopy(brickLocations, 0, this.brickLocations, 0,

brickLocations. length);

kLocations. length;

.getTime(Q);

getHostName();

this.numBricks = bl
this.timestamp = U
this.hostname = Ut
1PC.

3

« Providing a constructor ensures that
[IESSAGE SUBSCRIBE WETHOD]

the module using your message
[INTERNAL MESSAGE HANDLER] does not have to remember to do
things like fill in field lengths, or the

[VESSAGE PUBLICATION METHOD]
¥ timestamp and hostname.

The Anatomy of a Message

package RSS;

inport Carnen.;

ARIEN_BRICK_MESSAGE™;
1t:2> int, double, [char:101}";

efineMsg(MESSAGE_KAME, MESSAGE_FNMT);
ribeData(MESSAGE_NAME, new internalHandler(handler),
BrickMessage.class);
IPC. setMsgQueuelength(MESSAGE_NAME, 1);

[INTERNAL NESSAGE HANLER]

[MESSAGE PUBLICATION WETHOD]

The Anatomy of a Message

« Remember you have to define a
Pt separate interface class that

e tosureticl handles your message

RS S S + The internal handler ensures that
G e, o, o | 1 handler that is called when a
o BrickMessage is received matches
the handler type.

pobtic static s sscribe ricisier haner)

19 e inelsgQUESSGE O, VESSHGE P
1 S IbeOnaIESIGE U, e rtermatHandterhandtor)

19 ot SR IOV, 1
»

private static class internalbandler implements IPC.HANDLER_TYPE {
private static BrickHandler userHandler = null;
PrivateBrickHandler(MessageHandler userHandler)
this.userHandler = userHandler;

3
public void handle (IPC.MSG_INSTANCE

Bri message = (B
userHandler . handleBrick{nessage);

ance, Object cal IDat;
JcalIData;

¥

Dussice pisLicaTIOn ueTio)
)

public class BrickHandler,(
public void handleBrick(BrickMessage message);

The Anatomy of a Message

e, fnar 101

X oo e « We IPC.define’d the message in the
s userhanter = useradier: subscribe. Why do we need to
Bt o e v evac s, e et € define it here as well?

Ssapeycaltia

4 « Is this a good idea? Could we do it
better?
public void publish() ette
{
1PC..defineMsg(MESSAGE_NAME, MESSAGE_FMT);
1PC_ publ ishData(HESSAGE_NAME, this):
¥

3




Issues

= Concurrency

= What if a handler needs to run for a long time?

= | warn you now: threads will not help you.
= Graphical Displays

= How to display the internal state of a program for

debugging?

= Use a timer, and call Robot.listen() for a few ms.

= Initialization

= How to make sure every module agrees on the size of
the robot?

= Use the param_daemon to store/get parameters.

Some useful IPC methods

public static int disconnect () ;

public static boolean isConnected ();

public static boolean isModuleConnected (String moduleName);

public static int defineMsg (String msgName, String
formatString);

public static boolean isMsgDefined (String msgName);
public static int listen (long timeoutMSecs);
public static int listenClear (long timeoutMSecs);

public static Object queryResponseData

(String msgName, Object data, Class responseClass, long
timeoutMSecs);

public static int respondData (MSG_INSTANCE msglnstance,
String msgName, Object data)

Unit Testing
= How can things go wrong between the
design review and implementation?

= We forget what we promised messages would
look like.

= We forget what messages we promised to send.

= We forget what messages we promised to
subscribe to.

= We forget what we said was reasonable for a
message to contain.

= We forget what we said was the right order of
things (i.e., what our state machine is supposed
to look like).

= We forget some important edges cases.

a \Ao faraot ahat hannanc ta e if wua ico daoronc

Unit Testing for Message Sending

“If a program feature lacks an automated test, we
assume it doesn’t work. This seems much safer
than the prevailing assumption, that if a developer
assures us a program feature works, then it works
now and forever.” www.junit.org

We can build unit tests to automate some simple
ce adination tests

= Can we automate everything?

= Many projects dictate that unit testing is part of

the build process. Can we do this? Is it a good
idea?




The Anatomy of a UnitTest

package RSS:

inport Carm
inport. juni

lass [TESTCLASSNANE] {
id testIFIRSTTESTNAVE]Q) {

public void test[SECONDTESTNAVE]Q) {

b

public static void main(string args[l)
<

Junit. textui . TestRunner. run(suite) ;

b

Testsuite suite = new TestSuite(TESTCLASSNAVE . class):

+ Note that messages do not
implement standard interfaces.

By convention, you should,
however, implement a
constructor, a message
subscription method and a
publication method.

You could also support
query/response.

* Messages do, however, require a
separate interface file to ensure

type-safe message handling

A Unit Test for the BrickFinder

package RSS;

import Carmen.*;
import junit.*;

public class BrickFinderTest implements BrickHandler {
public void test[FIRSTTESTNAME]Q {

public static void main(String args[])
{

TestSuite suite = new TestSuite(BrickFinderTest.class);
Junit._textui.TestRunner.run(suite);

3
3

A Unit Test for the BrickFinder

package RSS:

import Carnen.;
inport junit.*;

public class BrickFinderTest iplenents Brickiandler {

private gotABrick = false;

public void handleBrick(Brickiessage message) {

gotABrick = true;

public void testBri inderSubscribe
Robot. initialize(“BrickFinderTest”

Camerallessage message = constructFakelmage();

message.publishQ;

Tocalhost™);

BrickMessage. subscribe(this)
Robot. listen(1000)
assertTrue(gotABrick);

3

PUbIC V0id tesE[SECOVDTESTNAVET() {

3

« Unit tests are not an exact science.

+ What can go wrong with our test

* What about during just this

public static void main(string args[1)
<

Testsuite suite = new TestSuite(BrickFinderTest. class):

during these three statements?

statement alone?

JUniE. textui . TestRumner . run(suite):

Additional Carmen Modules
Laser
Laser simulator (no vision, manipulator simulator)
Localize (laser-based, map-based localization)

Navigator (laser-based, map-based numerical potential field motion
planner) and navigator_panel (map gui)

Map builder (vasco)

Documentation exists at http://www.cs.cmu.edu/~carmen

Some gotchas in using these modules

Many of them do not have Java libraries yet. (That’s ok -- you’re
replacing these modules anyhow. But they may help in bootstrapping your
particular section.)

You must have a map. (There is one checked into rssll/data, called
“longwood.cmf™.)

The simulator subsumes orc, laser and robot_central. You do not need to
run any of these with the simulator.

You do need to run localize, navigator and navigator_panel to position the
robot graphically.




