Vision Strategies and
“Tools You Can Use”

RSS Il Lecture 5
September 16, 2005
Prof. Teller

Today

e Strategies

—What do we want from a vision system?
e Tools

—Pinhole camera model

—Vision algorithms
e Development

—Carmen Module APIs, brainstorming




Vision System Capabilities

- Material identification
— Are there bricks in vicinity? If so, where?
= Motion freedom
— What local motion freedom does robot have?
= Manipulation support
— Is brick pose amenable to grasping/placement?
— Is robot pose correct for grasping/placement?
» Localization
— Where is robot, with respect to provided map?
— Which way to home base? To a new region?
— Has robot been in this region before?

Material Identification

e Detecting bricks when they’re present
— How?

= Locate bricks
— In which coordinate system?
— Estimate range and bearing — how?




Gauge distance from apparent size?
* Yes — under what assumption?

Image

plane
z= z=+1

Pinhole Camera Model (physical)
l

\/ y

Image plane (u, v) World point

P=(.y.2)

Image pOint .................................................
p = (0, -y/z) Q"""

pinhole
at world World coordinates (X,y,z)
origin O

enclosure |

Notes:
Diagram is drawn in the plane x=0
Image-space u-axis points out of diagram
World-space x-axis points out of diagram
Both coordinate systems are left-handed




Pinhole Camera Model (virtual)

(“Virtual” image plane placed 1 unit in front of pinhole; no inversion)

World points
\% y P, = (0, ¥, 23)

Image point P; = (0, y;, z1)
p = (0, y/z)

Image plane (All points along ray Op project to image point p!)

z=0 z=+1

Perspective: Apparent Size

» Apparent object size decreases with depth
(perp. distance from camera image plane)




Perspective: Apparent Size

What assumptions yield depth?




Ground plane assumption

« Requires additional “metric” information
— Think of this as a constraint on camera, world structure
- Plane in scene, with two independent marked lengths
— Can measure distance to, or size of, objects on the plane

A
1\

3m

— ... but where do the marked lengths come from?

Camera Calibration

e Maps 3D world points WP to 2D image plane 'P

e Map can be factored into two operations:
— Extrinsic (rigid-body) calibration (situates camera in world)
— Intrinsic calibration (warps rays through optics onto image)

\Y
wz
height Y
Principal point °
P
L)
(ug, Vo)
1 width
Image coordinates Camera coordinates World coordinates
(pixels) (e.g., cm) (arbitrary choice)
a C U,
— w
u Kaxz = {0 B VO} Azxa = (Raus tax1)
00 1 w
'p=|v Wp -
1 'p = K (1/°2) AWP = K (1/°2) (R t) WP W2

P31 = Kayg (1/°Z) Agyy VP ayq 1




World-to-Camera Transform

» Relabels world-space points w.r.t. camera body
— Extrinsic (rigid-body) calibration (situates camera in world)

wz

Camera coordinates World coordinates
(e.g., cm) (arbitrary choice)
CX Agys = (Raxs taxn)
Cp: Cy CP = (1/°2) (R t) WP WP= w
1 CPay1 = (1/°Z) Agya WP z
Note effect of division by €z; no scaling necessary! 1

Camera-to-Image Transform

e Maps 2D camera points to 2D image plane
— Models ray path through camera optics and body to CCD

\Y
Y
height cz=1
u Z “x
Principal point ° (O
I p=|v ~, P Cp_|¢ y
(Ug, Vo)
1 — 1
K X
1 width
Image coordinates Camera coordinates
(pixels) Ip=KC¢P (e.g., cm)
P31 = Kays Payq
Matrix K captures the camera’s intrinsic parameters:
a C u0 a, B: horizontal, vertical scale factors
_ (equal iff pixel elements are square)
Kaxs= | 0 p Vo U.. v.: princi int i i
o Vo: principal point, i.e., point at
0 0 1 which optical axis pierces image plane

c: image element (CCD) skew, usually ~0




End-to-End Transformation

\Y
height
Principal point T
. P
(Ug, Vo)
1 width
Image coordinates Camera coordinates World coordinates
(pixels) (e.g., cm) (arbitrary choice)
a ¢ u,
— w
u Kaxs = {0 s "0} Azxa = (Raus tax1)
0 0 1 w
'p=|v wp =
1 'p =K (1/°2) AWP = K (1/°2) (R t) WP W2
'Paxt = Kayg (1/°Z) Agyy VP4 1

Example: Metric Ground Plane

 Make camera-frame and world-frame coincident
Thus R = I35, t = 05,4, Ayu = (R t) as before

e Lay out a tape measure on line x =0,y = -h
= Mark off points at (e.g.) 50-cm intervals &
< What is the functional form of map u = f(“x,%y,vz)?
| - Ip = K (1/°2) AWP = K (1/%2) I WP
mage poin
y Ip :g(Op' v. 1) = K (1/°2) (0, -h, ¢2)T
v =K (0, -h/Cz, 1)T
= (Ug, -Bh/Cz + vy, 1)T
Camer

Measure h; observe €Z;, v;;
repeatedly solve for ug, B, v,

z=0 Image plane , — ;1 2,=2 z,=3 2, =4




Vision System Capabilities

- Material identification
— Are there bricks in vicinity? If so, where?
e Motion freedom
— What local motion freedom does robot have?
< Manipulation support
— Is brick pose amenable to grasping/placement?
— Is robot pose correct for grasping/placement?
» Localization
— Where is robot, with respect to provided map?
— Which way to home base? To a new region?
— Has the robot been in this region before?

Motion Freedom

e What can be inferred from image?




Freespace Map

= Discretize bearing; classify surface type

Freespace Map ldeas

» Use simple color classifier
— Train on road, sidewalk, grass, leaves etc.

— Training could be done offline, or in a start-of-mission
calibration phase adapted from RSS Il Lab 2

= For each wedge of disk, could report distance to
nearest obstruction

e Careful: how will your code deal with varying
lighting conditions?
» Finally: can fuse (or confirm) with laser data

10



Vision System Capabilities

- Material identification
— Are there bricks in vicinity? If so, where?
= Motion freedom
— What local motion freedom does robot have?
e Manipulation support
— Is brick pose amenable to grasping/placement?
— Is robot pose correct for grasping/placement?
» Localization
— Where is robot, with respect to provided map?
— Which way to home base? To a new region?
— Has the robot been in this region before?

Manipulation Support

e Two options
— Manipulate brick into appropriate grasp pose
— Plan motion to approach the (fixed-pose) brick

Manipulation and/or motion plan

Initial pose

|

Desired pose

How? Hint: compute moments

How to disambiguate edge-on, end-on?

11



Vision System Capabilities

- Material identification
— Are there bricks in vicinity? If so, where?
= Motion freedom
— What local motion freedom does robot have?
= Manipulation support
— Is brick pose amenable to grasping/placement?
— Is robot pose correct for grasping/placement?
e Localization
— Where is robot, with respect to provided map?
— Which way to home base? To a new region?
— Has the robot been in this region before?

Localization support

e Localization w.r.t. a known map
— See localization lecture from RSS |
— Features: curb cuts, vertical building edges
= Map format not yet defined — one of your tasks

L, Ls
L,

{P, 6}

Locus of likely poses

12



Localization support

» Weaker localization model
—Create (virtual) landmarks at intervals e
—Chain each landmark to predecessor .,
—Recognize when landmark is revisited O
—Record direction from landmark to its

neighbors °
o/ e

e C

—... Is this map topological or metrical?
—... Does it support homing? Exploration?

Visual basis for landmarks

e Desire a visual property that:
— Is nearly invariant to large robot rotations
— Is nearly invariant to small robot translations
— Has a definable scalar distance d(b,c) [why?]

a

» Possible approaches:
— Hue histograms (coarsely discretized)
— Ordered hue lists (e.g., of vertical strips)
— Skylines (must segment ground from sky)
— Some hybrid of vision, laser data
— Careful: think about ambiguity in scene

13



Carmen Module APIs

e Vision module handles (processes) image stream
— Must export more compact representation than images

What representation(s) should module export?
— Features? Distances? Landmarks? Directions? Maps?

What questions should module answer?

— Are there collectable blocks nearby? Where?

— Has robot been here before? With what confidence?
— Which direction(s) will get me closer to home?

— Which direction(s) will explore new regions?

— Which directions are physically possible for robot?
What non-vision data should module accept?
— Commands to establish a new visual landmark?

— Notification of rotation in place? Translation?
Spiral development

— Put simple APIs in place, even if performance is stubbed
= Get someone else to exercise them; revise appropriately

Conclusion

» One plausible task decomposition
e Bottom-up operating scenario

» Related existing, new vision tools
e Functional view: what are APIS?
= Exhortation to spiral development

14



