
1

Vision Strategies and
“Tools You Can Use”

RSS II Lecture 5
September 16, 2005

Prof. Teller

Today
• Strategies

–What do we want from a vision system?

• Tools
–Pinhole camera model
–Vision algorithms

• Development
–Carmen Module APIs, brainstorming

2

Vision System Capabilities
• Material identification

– Are there bricks in vicinity? If so, where?

• Motion freedom
– What local motion freedom does robot have?

• Manipulation support
– Is brick pose amenable to grasping/placement?
– Is robot pose correct for grasping/placement?

• Localization
– Where is robot, with respect to provided map?
– Which way to home base? To a new region?
– Has robot been in this region before?

Material Identification
• Detecting bricks when they’re present

– How?

• Locate bricks
– In which coordinate system?
– Estimate range and bearing – how?

3

Gauge distance from apparent size?

v

Image
plane

y

z = +1z = 0

z

• Yes – under what assumption?

Pinhole Camera Model (physical)

P = (0, y, z)

z = -1

z

y

pinhole
at world
origin O

Image plane (u, v)
v

z = 0

p = (0, -y/z)

World coordinates (x,y,z)

World point

Image point

Notes:
Diagram is drawn in the plane x=0
Image-space u-axis points out of diagram
World-space x-axis points out of diagram
Both coordinate systems are left-handed

enclosure

4

Pinhole Camera Model (virtual)

P2 = (0, y2, z2)v

Image plane

y

p = (0, y/z)

z = +1z = 0

World points

Image point

z

P1 = (0, y1, z1)

(All points along ray Op project to image point p!)

O

(“Virtual” image plane placed 1 unit in front of pinhole; no inversion)

Perspective: Apparent Size
• Apparent object size decreases with depth

(perp. distance from camera image plane)

5

Perspective: Apparent Size

What assumptions yield depth?

6

Ground plane assumption
• Requires additional “metric” information

– Think of this as a constraint on camera, world structure

• Plane in scene, with two independent marked lengths
– Can measure distance to, or size of, objects on the plane

– … but where do the marked lengths come from?

1 m

1 m

2 m

3 m

4 m

Camera Calibration
• Maps 3D world points wP to 2D image plane IP
• Map can be factored into two operations:

– Extrinsic (rigid-body) calibration (situates camera in world)
– Intrinsic calibration (warps rays through optics onto image)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

100
0 0

0

v
uc

β
α

World coordinates
(arbitrary choice)

Camera coordinates
(e.g., cm)

cX

cY
cZ

wX

wY

wZ

Image coordinates
(pixels)

u

v

cO

wOIO

A3x4 = (R3x3 t3x1) K3x3 =

Ip = K (1/CZ) A WP = K (1/Cz) (R t) WP

wP

Ip3x1 = K3x3 (1/CZ) A3x4
WP4x1

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

1
z
y
x

W

W

W

PW

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

1
v
u

pI

width

height

(u0, v0)

Principal point

CP
IP

K A

7

World-to-Camera Transform
• Relabels world-space points w.r.t. camera body

– Extrinsic (rigid-body) calibration (situates camera in world)

World coordinates
(arbitrary choice)

A3x4 = (R3x3 t3x1)

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

1
z
y
x

W

W

W

PW

Camera coordinates
(e.g., cm)

cX

cY
cZ

wX

wY

wZ

cO

wO

wP

CP

A

CP = (1/Cz) (R t) WP

CP3x1 = (1/CZ) A3x4
WP4x1

cZ=1

Note effect of division by Cz; no scaling necessary!

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=
1
y
x

C

C

PC

Camera-to-Image Transform
• Maps 2D camera points to 2D image plane

– Models ray path through camera optics and body to CCD

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

100
0 0

0

v
uc

β
α

Camera coordinates
(e.g., cm)

cX

cY

Image coordinates
(pixels)

u

v

cO

IO

K3x3 =

Ip = K CP
Ip3x1 = K3x3

CP3x1

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

1

I v
u

p

width

height

(u0, v0)

Principal point

CP
IP

K

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=
1

C y
x

C

C

P

Matrix K captures the camera’s intrinsic parameters:
α, β: horizontal, vertical scale factors

(equal iff pixel elements are square)
u0, v0: principal point, i.e., point at

which optical axis pierces image plane
c: image element (CCD) skew, usually ~0

cZ
cZ=1

8

End-to-End Transformation

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

100
0 0

0

v
uc

β
α

World coordinates
(arbitrary choice)

Camera coordinates
(e.g., cm)

cX

cY
cZ

wX

wY

wZ

Image coordinates
(pixels)

u

v

cO

wOIO

A3x4 = (R3x3 t3x1) K3x3 =

Ip = K (1/CZ) A WP = K (1/Cz) (R t) WP

wP

Ip3x1 = K3x3 (1/CZ) A3x4
WP4x1

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

1

W

z
y
x

W

W

W

P
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

1

I v
u

p

width

height

(u0, v0)

Principal point

CP
IP

K A

cZ=1

y

Image plane

v

Ip = (0, v, 1)

z = +1z = 0

Image point

z1=2

y = -h

z2 = 3 z3 =4

z

• Make camera-frame and world-frame coincident
Thus R = I3x3, t = 03x1, A4x4 = (R t) as before

• Lay out a tape measure on line x = 0, y = -h
• Mark off points at (e.g.) 50-cm intervals
• What is the functional form of map u = f(wx,wy,wz)?

Ip = K (1/CZ) A WP = K (1/Cz) I WP

= K (1/CZ) (0, -h, Cz)T

= K (0, -h/Cz, 1)T

= (u0, -βh/Cz + v0, 1)T

Measure h; observe CZi, vi;
repeatedly solve for u0, β, v0

Example: Metric Ground Plane

Camera

9

Vision System Capabilities
• Material identification

– Are there bricks in vicinity? If so, where?

• Motion freedom
– What local motion freedom does robot have?

• Manipulation support
– Is brick pose amenable to grasping/placement?
– Is robot pose correct for grasping/placement?

• Localization
– Where is robot, with respect to provided map?
– Which way to home base? To a new region?
– Has the robot been in this region before?

Motion Freedom

• What can be inferred from image?

10

Freespace Map

• Discretize bearing; classify surface type

Freespace Map Ideas
• Use simple color classifier

– Train on road, sidewalk, grass, leaves etc.
– Training could be done offline, or in a start-of-mission

calibration phase adapted from RSS II Lab 2

• For each wedge of disk, could report distance to
nearest obstruction

• Careful: how will your code deal with varying
lighting conditions?

• Finally: can fuse (or confirm) with laser data

11

Vision System Capabilities
• Material identification

– Are there bricks in vicinity? If so, where?

• Motion freedom
– What local motion freedom does robot have?

• Manipulation support
– Is brick pose amenable to grasping/placement?
– Is robot pose correct for grasping/placement?

• Localization
– Where is robot, with respect to provided map?
– Which way to home base? To a new region?
– Has the robot been in this region before?

Manipulation Support
• Two options

– Manipulate brick into appropriate grasp pose
– Plan motion to approach the (fixed-pose) brick

Initial pose

Desired pose

Manipulation and/or motion plan

How? Hint: compute moments

How to disambiguate edge-on, end-on?

12

Vision System Capabilities
• Material identification

– Are there bricks in vicinity? If so, where?

• Motion freedom
– What local motion freedom does robot have?

• Manipulation support
– Is brick pose amenable to grasping/placement?
– Is robot pose correct for grasping/placement?

• Localization
– Where is robot, with respect to provided map?
– Which way to home base? To a new region?
– Has the robot been in this region before?

Localization support
• Localization w.r.t. a known map

– See localization lecture from RSS I
– Features: curb cuts, vertical building edges

• Map format not yet defined – one of your tasks

{P, θ}
Locus of likely poses

L1

L2

L3

13

Localization support
• Weaker localization model

–Create (virtual) landmarks at intervals
–Chain each landmark to predecessor
–Recognize when landmark is revisited
–Record direction from landmark to its

neighbors

–… Is this map topological or metrical?
–… Does it support homing? Exploration?

Visual basis for landmarks
• Desire a visual property that:

– Is nearly invariant to large robot rotations
– Is nearly invariant to small robot translations
– Has a definable scalar distance d(b,c) [why?]

• Possible approaches:
– Hue histograms (coarsely discretized)
– Ordered hue lists (e.g., of vertical strips)
– Skylines (must segment ground from sky)
– Some hybrid of vision, laser data
– Careful: think about ambiguity in scene

a b? ?

c

14

Carmen Module APIs
• Vision module handles (processes) image stream

– Must export more compact representation than images
• What representation(s) should module export?

– Features? Distances? Landmarks? Directions? Maps?
• What questions should module answer?

– Are there collectable blocks nearby? Where?
– Has robot been here before? With what confidence?
– Which direction(s) will get me closer to home?
– Which direction(s) will explore new regions?
– Which directions are physically possible for robot?

• What non-vision data should module accept?
– Commands to establish a new visual landmark?
– Notification of rotation in place? Translation?

• Spiral development
– Put simple APIs in place, even if performance is stubbed

• Get someone else to exercise them; revise appropriately

Conclusion

• One plausible task decomposition
• Bottom-up operating scenario
• Related existing, new vision tools
• Functional view: what are APIs?
• Exhortation to spiral development

