Massachusetts Institute of Technology

Robotics: Science and Systems — Spring 2005

Lab 2: The Carmen Robot Control Package, and
an Example Application: Visual Servoing

Tuesday, Septembed 3¢"

Objectives

Last Thursday, your team recovered your hardware from Estester, and ensured that all parts were working. Over
the next two weeks, you will recover your software, and peacindividual and team software development skills

before tackling the grand challenge. Once again we'll bagiiie robot control package Carmen. You should think
about how to abstract implementation-dependent detaslseXample, how would you generalize your implementation
to another robot, in another environment?

This is the last formal lab you will have for R:SS Il. Over the next two weeks, we will present you with the
structure to get you re-acquainted with the basic problems bsensing and acting in the real world. After this
lab, you will be setting your own milestones.

Your objectives in this lab are to:

e Re-familiarize yourself with the structure and use of theren robot control package;

e Re-familiarize yourself with on-line digital image acqitiisn and image processing operators including blob
detection, blob size and centroid estimation and illunaratalibration;

¢ Re-familiarize yourself with high-level decision makingdamotion planning;

¢ Implement an auto-calibration system, that will learn nahteation parameters for different coloured balls;
e Implement a simple motion planner, that will perform a totiagre-specified arrangement of balls;

e Document your implementation;

¢ Provide your implementation and documentation for anotibxm to use;

e Test another team’s implementation and documentation.

1 Re-familiarize yourself with your Robot

For the next two weeks, to minimize network problems, you kel running your robots tethered to the network. Your
robot is configured to have two network names:

e Tethered ethernetss-x-wired.mit.edu. If you are team 2, your tethered robot will have hostname

rss-2-wired.mit.edu . The IP address for robdf is 192.168.1.200 + X, sorss-2-wired.mit.edu
would have IP addres$)2.168.1.202. When your robot is tethered, it is not directly accessibderfthe outside
world.

e Wireless ethernetss-x.mit.edu If you are team 2, your wireless robot will have hostnas®e2.mit.edu
The IP address for robdt is 18.34.0. X X X, but there is no pattern matching group number to IP numbeeWh
your robot is wireless, you can connect to it directly frore thutside world.

We have not created individual user accounts on the roh&esjdst year, each robot has a geness-student
account with the same password.

2 Re-familiarize yourself with Carmen

Before beginning to control your robot with Carmen, make sure that your OrcBoard is connected to your SBC
with a serial cable, and the connection is secure at both enddake sure your camera is plugged into your SBC.
Make sure your that your robot is up on blocks (i.e., that its wheels are clear of the floor or table).

If you are unfamiliar with Carmen, a brief tutorial in how @aen was used in R:SS | is provided at the end of this
handout. Additionally, th&uide to the Use of the Carmen Mobile Robot Control PackagkimiRSSs available on
the RSS course page, and more Carmen documentatiohtigatwww.cs.cmu.edu/"carmen

Carmen has had some revisions since last year; you can datéiseversion of the software using subversion:
% svn checkout svn+ssh://rss-student@rss-sun-la:/srv/s vn/repository/rssil|

Note that if you wish to access the repository from outside ldb (i.e., from a non-RSS machine), the hostname
changes fronmmss-sun-la torss-hangar@mit.edu , asin

% svn checkout svn+ssh://rss-student@rss-hangar.mit.ed u:/srv/svn/repository/rssi|

from your laptop on the MIT network.

2.1 Onthe robot

1. Check out a copy of the R:SS Il repository on your rolss{x-wired).
% svn checkout svn+ssh://rss-student@rss-sun-la:/srv/s vn/repository/rssil|

2. Inside thessll/trunk directory, you should see 5 directories:
carmen bin lib include Vision

Of course, all of the files will show up in both places (the roained your workstation), but some files will only
be useful in some places. You should run the robot contrajqams on the robot itself. Typically you will run
the GUIs only on your workstation or laptop.

Insidebin/ reside the four main Carmen binaries for robot control, nigme
message_daemon param_daemon orc_daemon robot_central.

3. You should be able to start these prograsnsthe robot as you did last semester by running each one in a
separate xterm that is connected to your robot using SSH.

(More instructions exist at the end of this document, bubifi yun the commands in the order given above, with
no arguments, you should be on your way.)

2.2 On your workstation

1. Check out a copy of the R:SS Il repository to your local vetakion ¢ss-sun-x).
% svn checkout svn+ssh://rss-student@rss-sun-la:/srv/s vn/repository/rssill

2. Inside theVision directoryon your workstation, you will discover java class files, including tRebotGUI
class from last year. Compile the class files usimke, and run theRobotGUI using

% java -cp ../carmen/Carmen.jar.. RobotGUI

3. You must tell the RobotGUI (running on your local workstation) where to find your robot o n the network.
You should either editRobotGUl.java to give your robot a default IP address, or provide your robots
IP address on the command line, as in:

% java -cp ../carmen/Carmen.jar:. RobotGUI 192.168.1.202

4. OnceRobotGUI has connected to the robot, you should see the robotGUIlajisahd a blue window where
the camera display would be (since you are not yet runningaingera_daemon).

5. Control your robot’s wheel motions using the keyboardt¢lmove forward, 'J'/’L’ to turn left, right, etc.). Do
the wheels turn the right way? When in contact with the flooH, the wheels turn the robot the same way as it
rotates on the screen? If not, are your motors connectecttodirect respective ports? Are the motor encoders
connected to the correct respective ports?

3 Re-familiarize yourself with image acquisition and processing

Insidebin , you will discover the main Carmen binary for image acqiositcamera_daemon . Start the
camera_daemon on the robot. Didcamera_daemon start? Is your camera plugged in? Is it complaining about
permissions oridev/videoO ? If so, consult a TA. Are thewc andpwcx modules installed? (See the appendix.)
If not, consult a TA for help running thiastall_quickcam_drivers.sh script.

At this point, you have a choice: you can either recover yaatecfrom last semester, and run your own
VisualServo module, or you can run the “solutioVisualServo module we have provided for you in the
Vision directory.Remember to specify your robot’s IP address tdVisualServo as well.

You can invokeVisualServo (either the provided solution or your own) as:
% java -cp ../carmen/Carmen.jar:. VisualServo

you should see the camera image in the right pariofotGUI . If you hold up a ball of the right colour, the displayed
image should contain labelled pixels.

At this point, you need to start modifying code or writing yaawn. You shouldnot check code into the
rssll repository, as this will corrupt everyone else’s code. Weeharovided you with your own repositg
ries, that you can check your modified code into.

Check out your own group repository using:

% svn checkout svn+ssh://rss-student@rss-sun-la:/srv/s vn/repository/group-x
Now, copy the files you will be changing (e.¥isualServo.java , RobotGUl.java) into your local
repository.

4 Implement an auto-calibration system

Consider what must happen if the colour of the ball changiseEbecause the right colour ball is missing today, or
because the lighting has changed and now the same cololodidifferent to the robot’s camera system. We need
to be able to re-calibrate our image processing module guick

Write a java program that records a file of colour names mappet8l triplets. The program should do the following:

1. Wait for keyboard input
2. Take either a colour name or the worehtl” from the keyboard

3. If a colour name is received, assumes that a ball is beitdyihdront of the camera. The current image is
processed, the dominant HSV colour (mode of the histogramgdorded, and labelled with the colour name.
The program then waits for more input (step 1).

4. If the word “end” is received, the program should prompt for a filename, witiie list of entered colours and
associated HSV triplets to the specified file, then exit.

Note that we have not specified the file format. That's up to you

Modify the VisualServo program (either your own, or the one provided), to load yolar dif colour names and
HSV values, and then visual servo towards any ball of a lehootour.

5 Implement a simple motion planner

Now, imagine wanting to take a tour of multiple coloured bddlid out on the hangar floor. Simple visual servoing is
unlikely to solve this problem, unless the robot can see mit$te balls from most of the floor. If, however, we move
the balls out of visual range of one another, then we havett@alflg perform motion planning. In this lab, we won’t
ask you to perform sophisticated obstacle avoidance, @ifngou should be able to do so.

Write a java program that accepts a list of coloured balls &ei tocations relative to the start location of the robot:

1. Set up your robot at some location on the hangar floor
2. Set up 4 coloured balls around the robot, separated fratm @her and from the robot by a metre or two

3. Assuming the robot is g0, 0), and facing along the positive axis, measure thér, y) positions of each ball
relative to the robot

4. Record the colour and position of each ball in a text file

5. Write a java program that

(a) Reads the text filand colour name/HSV calibration file

(b) Turns the robot to face the first ball

(c) Drives the robot until a ball of the appropriate colouimwisual range

(d) Begins visually servoing to the ball, until the ball imteed in the visual field

(e) Repeats the tour to the second ball, until all balls haenli'surveyed”. If the current ball obstructs the
next ball, donot drive through the ball but drivaround

6 Document your implementation

A major deliverable of this lab is to be able to document yaae sufficiently well that someone else can use it. For
consistency, we ask you to implement the following docurao procedure:

e You should develop a complete, itemized set of instructammblow to operate your implementation.

e You should have a complete set of documentation on all da€d3ecument your source codwside the code,
then usgavadoc to auto-generate HTML documentation. Then incorporate ML in your wiki.

¢ You should have complete documentation of all your file fas(a.g., calibration files, motion plan files, etc.)
in your wiki as well.

¢ You should have complete documentation on how to retrieve gode from the repository.

A word on source control: We are supplying you with code via thesll repository — this repository isotwritable
by you. Each group has their own repository, which is cutyesmnpty. You can check out your repository using

% svn checkout svn+ssh://rss-student@rss-hangar.mit.ed u:/srv/svn/repository/group-x

(wherex is your own group). Of course, you can add code to your repgswith svn add andsvn commit .

7 Testing another’s implementation

On Thursday, September 22nd, you will stop development of gavn implementation, and spend the lab time testing
another team’s implementation. Each tearwill be tested by teani(n + 1) % 5) + 1 — that is, team 5 will test
team 4, team 1 will test team 5, team 2 will test team 1, and s&/on should begin by reading the wiki of the team
you are testing, to learn how to check out and run their codeyour own wiki, you will document how well you
were able to run the code. You should make conciiastructive suggestions for improvements to both the team’s
implementation and their documentation. (Make sure to lpstroctive; gratuitously negative comments will damage
your own team’s grade, not the other team’s.)

Time Accounting and Self-Assessment.

This lab can be a demanding one in terms of time. You mustfim@réearn to parallelize development. For example,
you may wish to generate all necessary class files as emptystubbed out methods, efiirst. You may then wish

to split into two groups, one group of two team members deialpthe auto-calibration code and two team members
developing the motion planner simultaneously. If you cleomsparallelize like this, you should consider generating
the documentation on class files and file formiatst before beginning implementation. That is, we suggest you
agree on, and document, your code specification before mgiéng it. You may then wish to assign team members
different tasks in terms of documentation, testing, etc..

After preparing your report on the success of running youtreed team’s code, return to the Time and Assessment
pages of your individual logbooks. Tally your total indivi effort there, including time spent writing up your repor
Answer the “Self Assessment” questions again, post-Lald the date and time of your post-lab responsafter

you have done this individually, please also add a sentemgeur team'’s Lab report stating the individual number
of hours each member devoted, and the total number of pdrsors your team devoted, to the lab, including T/R lab
hours.

8 Appendix

8.1 The Carmen Robot Control Package

Carmen is a distributed collection of modules (technicgilpcesses, each running in a separate address space) that
together implement autonomous robot control, and supps@t aperations such as remote modification and moni-
toring of robot internal state. Carmen modules communitateugh a networked, anonymous “publish/subscribe”
mechanism, in which the only supported communication meishas are to publish data of interest to other subscriber
modules, and/or subscribe to receive notification of datadigplved by other modules.

A robot control system built on top of the Carmen toolkit walidinarily invoke at least three processes to support
autonomous operation:

e Themessage daemon process provides inter-process connectivity to all Carmedules, ensuring that mod-
ules may publish any data, and that modules may subscribeytdata type (and be notified whenever new
values of that data type become available).

e Theparam_daemon process provides a central repository for robot configarapjarameters (e.g., odometry
scale factors and biases, maximum velocity constraintstraiber gains, etc.).param_daemon reads the
carmen.ini file at startup and publishes its contents to any interestbdcsibers vianessage daemon.
param_daemon also supports changing (and re-publishing) some paramétging robot operation.

e Therobot_central process 1obot_central) integrates the published outputs of various sensor mod-
ules (including, but not limited to, therc_daemon andcamera_daemon), performing time-stamping and
odometry-stamping of each captured sensor measuremepuatidhing the stamped values.

robot_central also provides local response (or “reflex”) behaviors forent or imminent collisions, e.g.,
bump sensor activation or fast-closing sonar returns.

Because we use the OrcBoard for motor and sensor manageanerbecause in this lab we are developing a semi-
autonomous (i.e., human-monitored) visual servoing cédipalur robot system will invoke four additional Carmen
modules:

e The orc_daemon process abstracts away the details of controlling the raftot high-level, body-relative
velocity commands, and makes current odometry availabbnyosubscribersorc_daemon will also pass
bump-sensor and sonar state updatesiot_central in future labs.orc_daemon is a Carmen replace-
ment fororcd .

e Thecamera_daemon process abstracts away the details of managing the cana¢eaistluding any captured
images.camera_daemon publishes the most recently acquired camera image as a ap @rRGB pixels.

e TheVisualServo process analyzes the most recent captured image, andhmgbtisbot velocity commands
intended to size and position the detected visual targangj in the robot camera’s field of view.

e TheRobotGUI process provides a graphical user interface (GUI) with Whine or more users can remotely
command the robot, and observe and modify its internal state

9 Download and Incorporate the New Source

We have placed the Carmen binaries in bie directory underssll .We have placed the Carmen class library
(Carmen.jar) in therssll/trunk/carmen directory. In this directory we have also provided the Camrjeva
source. You should not need to compile this source, but vahtto familiarize yourself with the classes and interfaces

We have placed java fileRRpbotGui.java , VisualServo.java , etc) in thetrunk/Vision directory. We
have also provided a makefile for command line compilation.

There are a few critical steps in installing Carmen. It is artpnt that you follow our recommended source directory
structure and build environment. If you are unsure abougp, stonsult a TA.

First you will configure your Sun Workstation environment:
1. Check out thessll repository using
% svn checkout svn+ssh://rss-student@rss-sun-la:/srv/s vn/repository/rssll
2. Check out your own code repository using
% svn checkout svn+ssh://rss-student@rss-sun-la:/srv/s vn/repository/group-x

Copy all the files fronrsslli/trunk to group-x

3. The next step is to set your bash environment up correletlthe directory/rssll/trunk/conf/ is the
file dot_bash_profile . Copy this to™/.bash_profile and edit thedRSS_GROUP_HOM#riable.
(Or merge it with your existing/.bash_profile if you want to keep your existing settings.) Open a new
shell to use the updatedash_profile

4. Verify that you can compile the Vision source lmgd “/group-x/Vision; make
Now proceed to configure your SBC environment.

1. Start up the SBC.
2. SSH into the SBC witksh rss-student@rss-X

3. Check out thessll repository using
% svn checkout svn+ssh://rss-student@rss-sun-la:/srv/s vn/repository/rssil|

as before.

4. Check out your own code repository using

% svn checkout svn+ssh://rss-student@rss-sun-la:/srv/s vn/repository/group-x
Copy all the files fronrssll/trunk to group-x

5. Incorporate the default profiférssll/trunk/conf/dot_bash_profile into your
“/.bash_profile as before. Close and reopen the SSH session to use your dfidassh_profile

6. Install the drivers for the QuickCam with the script:
“Irssll/trunk/confl/install_quickcam_drivers.sh

7. Plugin the camera to the SBC’s USB port. The QuickCam shibelauto-detected, and the/c module should
load automatically (courtesy &étc\init.d\hotplug).

8. Manually load thegwcx module with™/rss/rss_groupN/conf/load _quickcam_modules.sh

9. Verify that the required modules are loaded by dosuglo Ismod | grep pwc =*. (Ask a TA for the
required password.) After this, you should see:

pwcx 89056 0 (unused)

pwc 47536 0 [pwecx]

videodev 6464 1 [pwc]

usbcore 62924 1 [audio pwc usb-uhci]

If you do not see the above module list, furssll/trunk/conf/reset_hotplug.sh , and try again.

10. Open five shell windows and in each, SSH onto your SBC. Ketewill run five Carmen binaries, each
compiled from C source. You will not need to modify or rebuidldy of these binaries for this lab, although
this is possible if you really want to (ask the staff). Witléach shell, start one foreground Carmen process,
respectively:

message_daemon

param_daemon

orc_daemon

camera_daemon

robot_central
You must starinessage_daemon first, thenparam_daemon, but the rest can be started in any order. Also,
param_daemon must be started from withihin .

11. Now verify that the QuickCam is working. SSH wikh -X rss-student@rss-X ,and run
camera_view . You should now see the camera video. If the QuickCam is nokiwg, ask a TA for help.

12. Onthe Sun, in RobotGUI.java and VisualServo.java, fiyatie line
Robot.initialize("VisualServo", "rss-X");
to use the hostname of your SBC. Recompile the source.

13. Now on the Sun, start the remaining Carmen processesyfooimgroup-n/Vision directory:
java -cp ../carmen/Carmen.jar:.. VisualServo
java -cp ../carmen/Carmen.jar:. RobotGUI

The RobotGui should show you an iconic overhead view of thetiaand a reduced version of the camera image
next to it. Congratulations! You are ready to start impletivenyour solution.

10 Use Carmen to control the robot

RobotGUI subscribes to odometry-stamped camera data ifhages) of class VisionimageMessage published by
VisualServo. In one pane, RobotGUI draws an icon that rgmtssthe current robot state.

You can drive the robot around using RobotGUI. See Robotjat# for the keybindings that drive the robot. Take the
robot for a spin. Note: the robot origin is pinned to the cenfehe robot pane. The robot is drawn with an orientation
or “attitude” equal to its signed orientation with respextts orientation at time 0 of the current robot session.

The other RobotGUI pane shows the most recent camera imagee ¥ object in front of the camera and see the
most recent image change.

