
Massachusetts Institute of Technology

Robotics: Science and Systems – Spring 2005

Lab 2: The Carmen Robot Control Package, and
an Example Application: Visual Servoing

Tuesday, September13th

Objectives

Last Thursday, your team recovered your hardware from last semester, and ensured that all parts were working. Over
the next two weeks, you will recover your software, and practice individual and team software development skills
before tackling the grand challenge. Once again we’ll be using the robot control package Carmen. You should think
about how to abstract implementation-dependent details. For example, how would you generalize your implementation
to another robot, in another environment?

This is the last formal lab you will have for R:SS II. Over the next two weeks, we will present you with the
structure to get you re-acquainted with the basic problems of sensing and acting in the real world. After this
lab, you will be setting your own milestones.

Your objectives in this lab are to:

• Re-familiarize yourself with the structure and use of the Carmen robot control package;

• Re-familiarize yourself with on-line digital image acquisition and image processing operators including blob
detection, blob size and centroid estimation and illumination calibration;

• Re-familiarize yourself with high-level decision making and motion planning;

• Implement an auto-calibration system, that will learn new calibration parameters for different coloured balls;

• Implement a simple motion planner, that will perform a tour of a pre-specified arrangement of balls;

• Document your implementation;

• Provide your implementation and documentation for anotherteam to use;

• Test another team’s implementation and documentation.

1 Re-familiarize yourself with your Robot

For the next two weeks, to minimize network problems, you will be running your robots tethered to the network. Your
robot is configured to have two network names:

• Tethered ethernet:rss-x-wired.mit.edu. If you are team 2, your tethered robot will have hostname
rss-2-wired.mit.edu . The IP address for robotX is192.168.1.200 + X, sorss-2-wired.mit.edu
would have IP address192.168.1.202. When your robot is tethered, it is not directly accessible from the outside
world.

1

• Wireless ethernet:rss-x.mit.edu. If you are team 2, your wireless robot will have hostnamerss-2.mit.edu .
The IP address for robotX is18.34.0.XXX, but there is no pattern matching group number to IP number. When
your robot is wireless, you can connect to it directly from the outside world.

We have not created individual user accounts on the robots; like last year, each robot has a genericrss-student
account with the same password.

2 Re-familiarize yourself with Carmen

Before beginning to control your robot with Carmen, make sure that your OrcBoard is connected to your SBC
with a serial cable, and the connection is secure at both ends. Make sure your camera is plugged into your SBC.
Make sure your that your robot is up on blocks (i.e., that its wheels are clear of the floor or table).

If you are unfamiliar with Carmen, a brief tutorial in how Carmen was used in R:SS I is provided at the end of this
handout. Additionally, theGuide to the Use of the Carmen Mobile Robot Control Package Within RSSis available on
the RSS course page, and more Carmen documentation is athttp://www.cs.cmu.edu/˜carmen .

Carmen has had some revisions since last year; you can get thelatest version of the software using subversion:

% svn checkout svn+ssh://rss-student@rss-sun-la:/srv/s vn/repository/rssII

Note that if you wish to access the repository from outside the lab (i.e., from a non-RSS machine), the hostname
changes fromrss-sun-la to rss-hangar@mit.edu , as in

% svn checkout svn+ssh://rss-student@rss-hangar.mit.ed u:/srv/svn/repository/rssII

from your laptop on the MIT network.

2.1 On the robot

1. Check out a copy of the R:SS II repository on your robot (rss-x-wired).

% svn checkout svn+ssh://rss-student@rss-sun-la:/srv/s vn/repository/rssII

2. Inside therssII/trunk directory, you should see 5 directories:

carmen bin lib include Vision

Of course, all of the files will show up in both places (the robot and your workstation), but some files will only
be useful in some places. You should run the robot control programs on the robot itself. Typically you will run
the GUIs only on your workstation or laptop.

Insidebin/ reside the four main Carmen binaries for robot control, namely,

message_daemon param_daemon orc_daemon robot_central.

3. You should be able to start these programson the robot as you did last semester by running each one in a
separate xterm that is connected to your robot using SSH.

(More instructions exist at the end of this document, but if you run the commands in the order given above, with
no arguments, you should be on your way.)

2

2.2 On your workstation

1. Check out a copy of the R:SS II repository to your local workstation (rss-sun-x).

% svn checkout svn+ssh://rss-student@rss-sun-la:/srv/s vn/repository/rssII

2. Inside theVision directoryon your workstation, you will discover java class files, including theRobotGUI
class from last year. Compile the class files usingmake, and run theRobotGUI using

% java -cp ../carmen/Carmen.jar:. RobotGUI

3. You must tell the RobotGUI (running on your local workstation) where to find your robot on the network.
You should either editRobotGUI.java to give your robot a default IP address, or provide your robot’s
IP address on the command line, as in:

% java -cp ../carmen/Carmen.jar:. RobotGUI 192.168.1.202

4. OnceRobotGUI has connected to the robot, you should see the robotGUI display, and a blue window where
the camera display would be (since you are not yet running thecamera_daemon).

5. Control your robot’s wheel motions using the keyboard (’I’ to move forward, ’J’/’L’ to turn left, right, etc.). Do
the wheels turn the right way? When in contact with the floor, will the wheels turn the robot the same way as it
rotates on the screen? If not, are your motors connected to the correct respective ports? Are the motor encoders
connected to the correct respective ports?

3 Re-familiarize yourself with image acquisition and processing

Insidebin , you will discover the main Carmen binary for image acquisition, camera_daemon . Start the
camera_daemon on the robot. Didcamera_daemon start? Is your camera plugged in? Is it complaining about
permissions on/dev/video0 ? If so, consult a TA. Are thepwc andpwcx modules installed? (See the appendix.)
If not, consult a TA for help running theinstall_quickcam_drivers.sh script.

At this point, you have a choice: you can either recover your code from last semester, and run your own
VisualServo module, or you can run the “solution”VisualServo module we have provided for you in the
Vision directory.Remember to specify your robot’s IP address toVisualServo as well.

You can invokeVisualServo (either the provided solution or your own) as:

% java -cp ../carmen/Carmen.jar:. VisualServo

you should see the camera image in the right pane ofRobotGUI . If you hold up a ball of the right colour, the displayed
image should contain labelled pixels.

3

At this point, you need to start modifying code or writing your own. You shouldnot check code into the
rssII repository, as this will corrupt everyone else’s code. We have provided you with your own reposito-
ries, that you can check your modified code into.

Check out your own group repository using:

% svn checkout svn+ssh://rss-student@rss-sun-la:/srv/s vn/repository/group-x

Now, copy the files you will be changing (e.g.,VisualServo.java , RobotGUI.java) into your local
repository.

4 Implement an auto-calibration system

Consider what must happen if the colour of the ball changes, Either because the right colour ball is missing today, or
because the lighting has changed and now the same colour balllooksdifferent to the robot’s camera system. We need
to be able to re-calibrate our image processing module quickly.

Write a java program that records a file of colour names mapped to HSV triplets. The program should do the following:

1. Wait for keyboard input

2. Take either a colour name or the word “end ” from the keyboard

3. If a colour name is received, assumes that a ball is being held in front of the camera. The current image is
processed, the dominant HSV colour (mode of the histogram) is recorded, and labelled with the colour name.
The program then waits for more input (step 1).

4. If the word “end ” is received, the program should prompt for a filename, writethe list of entered colours and
associated HSV triplets to the specified file, then exit.

Note that we have not specified the file format. That’s up to you.

Modify the VisualServo program (either your own, or the one provided), to load your file of colour names and
HSV values, and then visual servo towards any ball of a learned colour.

5 Implement a simple motion planner

Now, imagine wanting to take a tour of multiple coloured balls laid out on the hangar floor. Simple visual servoing is
unlikely to solve this problem, unless the robot can see mostof the balls from most of the floor. If, however, we move
the balls out of visual range of one another, then we have to actually perform motion planning. In this lab, we won’t
ask you to perform sophisticated obstacle avoidance, although you should be able to do so.

Write a java program that accepts a list of coloured balls and their locations relative to the start location of the robot:

1. Set up your robot at some location on the hangar floor

2. Set up 4 coloured balls around the robot, separated from each other and from the robot by a metre or two

3. Assuming the robot is at(0, 0), and facing along the positivex axis, measure the(x, y) positions of each ball
relative to the robot

4. Record the colour and position of each ball in a text file

5. Write a java program that

4

(a) Reads the text fileand colour name/HSV calibration file

(b) Turns the robot to face the first ball

(c) Drives the robot until a ball of the appropriate colour isin visual range

(d) Begins visually servoing to the ball, until the ball is centred in the visual field

(e) Repeats the tour to the second ball, until all balls have been “surveyed”. If the current ball obstructs the
next ball, donot drive through the ball but drivearound.

6 Document your implementation

A major deliverable of this lab is to be able to document your code sufficiently well that someone else can use it. For
consistency, we ask you to implement the following documentation procedure:

• You should develop a complete, itemized set of instructionson how to operate your implementation.

• You should have a complete set of documentation on all classes. Document your source codeinside the code,
then usejavadoc to auto-generate HTML documentation. Then incorporate this HTML in your wiki.

• You should have complete documentation of all your file formats (e.g., calibration files, motion plan files, etc.)
in your wiki as well.

• You should have complete documentation on how to retrieve your code from the repository.

A word on source control: We are supplying you with code via therssII repository – this repository isnotwritable
by you. Each group has their own repository, which is currently empty. You can check out your repository using

% svn checkout svn+ssh://rss-student@rss-hangar.mit.ed u:/srv/svn/repository/group-x

(wherex is your own group). Of course, you can add code to your repository with svn add andsvn commit .

7 Testing another’s implementation

On Thursday, September 22nd, you will stop development of your own implementation, and spend the lab time testing
another team’s implementation. Each teamn will be tested by team((n + 1) % 5) + 1 — that is, team 5 will test
team 4, team 1 will test team 5, team 2 will test team 1, and so on. You should begin by reading the wiki of the team
you are testing, to learn how to check out and run their code. In your own wiki, you will document how well you
were able to run the code. You should make concrete,constructive suggestions for improvements to both the team’s
implementation and their documentation. (Make sure to be constructive; gratuitously negative comments will damage
your own team’s grade, not the other team’s.)

Time Accounting and Self-Assessment.

This lab can be a demanding one in terms of time. You must therefore learn to parallelize development. For example,
you may wish to generate all necessary class files as empty, with stubbed out methods, etc.first. You may then wish
to split into two groups, one group of two team members developing the auto-calibration code and two team members
developing the motion planner simultaneously. If you choose to parallelize like this, you should consider generating
the documentation on class files and file formatsfirst before beginning implementation. That is, we suggest you
agree on, and document, your code specification before implementing it. You may then wish to assign team members
different tasks in terms of documentation, testing, etc..

5

After preparing your report on the success of running your partnered team’s code, return to the Time and Assessment
pages of your individual logbooks. Tally your total individual effort there, including time spent writing up your report.
Answer the “Self Assessment” questions again, post-Lab. Add the date and time of your post-lab responses.After
you have done this individually, please also add a sentence to your team’s Lab report stating the individual number
of hours each member devoted, and the total number of person-hours your team devoted, to the lab, including T/R lab
hours.

8 Appendix

8.1 The Carmen Robot Control Package

Carmen is a distributed collection of modules (technically, processes, each running in a separate address space) that
together implement autonomous robot control, and support user operations such as remote modification and moni-
toring of robot internal state. Carmen modules communicatethrough a networked, anonymous “publish/subscribe”
mechanism, in which the only supported communication mechanisms are to publish data of interest to other subscriber
modules, and/or subscribe to receive notification of data published by other modules.

A robot control system built on top of the Carmen toolkit willordinarily invoke at least three processes to support
autonomous operation:

• Themessage_daemon process provides inter-process connectivity to all Carmenmodules, ensuring that mod-
ules may publish any data, and that modules may subscribe to any data type (and be notified whenever new
values of that data type become available).

• Theparam_daemon process provides a central repository for robot configuration parameters (e.g., odometry
scale factors and biases, maximum velocity constraints, controller gains, etc.).param_daemon reads the
carmen.ini file at startup and publishes its contents to any interested subscribers viamessage_daemon .
param_daemon also supports changing (and re-publishing) some parameters during robot operation.

• The robot_central process (robot_central) integrates the published outputs of various sensor mod-
ules (including, but not limited to, theorc_daemon andcamera_daemon), performing time-stamping and
odometry-stamping of each captured sensor measurement andpublishing the stamped values.

robot_central also provides local response (or “reflex”) behaviors for current or imminent collisions, e.g.,
bump sensor activation or fast-closing sonar returns.

Because we use the OrcBoard for motor and sensor management,and because in this lab we are developing a semi-
autonomous (i.e., human-monitored) visual servoing capability, our robot system will invoke four additional Carmen
modules:

• The orc_daemon process abstracts away the details of controlling the robotinto high-level, body-relative
velocity commands, and makes current odometry available toany subscribers.orc_daemon will also pass
bump-sensor and sonar state updates torobot_central in future labs.orc_daemon is a Carmen replace-
ment fororcd .

• Thecamera_daemon process abstracts away the details of managing the camera state, including any captured
images.camera_daemon publishes the most recently acquired camera image as a 2D array of RGB pixels.

• TheVisualServo process analyzes the most recent captured image, and publishes robot velocity commands
intended to size and position the detected visual target (ifany) in the robot camera’s field of view.

• TheRobotGUI process provides a graphical user interface (GUI) with which one or more users can remotely
command the robot, and observe and modify its internal state.

6

9 Download and Incorporate the New Source

We have placed the Carmen binaries in thebin directory underrssII .We have placed the Carmen class library
(Carmen.jar) in the/rssII/trunk/carmen directory. In this directory we have also provided the Carmen java
source. You should not need to compile this source, but will want to familiarize yourself with the classes and interfaces.

We have placed java files (RobotGui.java , VisualServo.java , etc) in thetrunk/Vision directory. We
have also provided a makefile for command line compilation.

There are a few critical steps in installing Carmen. It is important that you follow our recommended source directory
structure and build environment. If you are unsure about a step, consult a TA.

First you will configure your Sun Workstation environment:

1. Check out therssII repository using

% svn checkout svn+ssh://rss-student@rss-sun-la:/srv/s vn/repository/rssII

2. Check out your own code repository using

% svn checkout svn+ssh://rss-student@rss-sun-la:/srv/s vn/repository/group-x

Copy all the files fromrssII/trunk to group-x .

3. The next step is to set your bash environment up correctly.In the directorỹ /rssII/trunk/conf/ is the
file dot_bash_profile . Copy this to˜/.bash_profile and edit the$RSS_GROUP_HOMEvariable.
(Or merge it with your existing̃/.bash_profile if you want to keep your existing settings.) Open a new
shell to use the updated.bash_profile .

4. Verify that you can compile the Vision source by:cd ˜/group-x/Vision; make .

Now proceed to configure your SBC environment.

1. Start up the SBC.

2. SSH into the SBC withssh rss-student@rss-X .

3. Check out therssII repository using

% svn checkout svn+ssh://rss-student@rss-sun-la:/srv/s vn/repository/rssII

as before.

4. Check out your own code repository using

% svn checkout svn+ssh://rss-student@rss-sun-la:/srv/s vn/repository/group-x

Copy all the files fromrssII/trunk to group-x .

5. Incorporate the default profilẽ/rssII/trunk/conf/dot_bash_profile into your
˜/.bash_profile as before. Close and reopen the SSH session to use your updated ˜/.bash_profile .

6. Install the drivers for the QuickCam with the script:
˜/rssII/trunk/conf/install_quickcam_drivers.sh .

7

7. Plug in the camera to the SBC’s USB port. The QuickCam should be auto-detected, and thepwc module should
load automatically (courtesy of\etc\init.d\hotplug).

8. Manually load thepwcx module with˜/rss/rss_groupN/conf/load_quickcam_modules.sh .

9. Verify that the required modules are loaded by doingsudo lsmod | grep pwc * . (Ask a TA for the
required password.) After this, you should see:

pwcx 89056 0 (unused)
pwc 47536 0 [pwcx]
videodev 6464 1 [pwc]
usbcore 62924 1 [audio pwc usb-uhci]

If you do not see the above module list, run˜/rssII/trunk/conf/reset_hotplug.sh , and try again.

10. Open five shell windows and in each, SSH onto your SBC. Hereyou will run five Carmen binaries, each
compiled from C source. You will not need to modify or rebuildany of these binaries for this lab, although
this is possible if you really want to (ask the staff). Withineach shell, start one foreground Carmen process,
respectively:

message_daemon

param_daemon

orc_daemon

camera_daemon

robot_central

You must startmessage_daemon first, thenparam_daemon , but the rest can be started in any order. Also,
param_daemon must be started from withinbin .

11. Now verify that the QuickCam is working. SSH withssh -X rss-student@rss-X , and run
camera_view . You should now see the camera video. If the QuickCam is not working, ask a TA for help.

12. On the Sun, in RobotGUI.java and VisualServo.java, modify the line

Robot.initialize("VisualServo", "rss-X");

to use the hostname of your SBC. Recompile the source.

13. Now on the Sun, start the remaining Carmen processes fromyourgroup-n/Vision directory:

java -cp ../carmen/Carmen.jar:. VisualServo

java -cp ../carmen/Carmen.jar:. RobotGUI

The RobotGui should show you an iconic overhead view of the robot, and a reduced version of the camera image
next to it. Congratulations! You are ready to start implementing your solution.

10 Use Carmen to control the robot

RobotGUI subscribes to odometry-stamped camera data (i.e., images) of class VisionImageMessage published by
VisualServo. In one pane, RobotGUI draws an icon that represents the current robot state.

You can drive the robot around using RobotGUI. See RobotGUI.java for the keybindings that drive the robot. Take the
robot for a spin. Note: the robot origin is pinned to the center of the robot pane. The robot is drawn with an orientation
or “attitude” equal to its signed orientation with respect to its orientation at time 0 of the current robot session.

The other RobotGUI pane shows the most recent camera image. Wave an object in front of the camera and see the
most recent image change.

8

