Lab 6: Appendices

Appendix A: ORC Board PCB Layout and Port Usage
The IO ports are located on the bottom of image below, inside the black square. Their usage is shown in the table. Refer to lab instructions for pin connections and polarities.

[image: image1]
[image: image5.jpg]l

¢
e £10K ZLOW 3 LLOK OLOW

J 4m4

)
(1228 €H1Z 0001

°
seisscscsnvane + B L)
J6

i I::i

e e ®0000000000000 ot 3¥E
| = WDO olelofe

=} — 6000060060600 0 1 olefe]o
S & = cw c_o__e wvno olo]e]e
VBAT (=) Er <<<<<<<< R e

57 8910112131415

S OO
ORCPAD ‘
feeeccceq l(vu(

<
oEon|

L XY
20
oo
°
)
|

[\\pa-jiw|ioso'qojsoui/ /:dyy

ale|ale|cisa
s
Re

?’aas

[image: image2.emf]Port Mode Usage

0 Servo servo 0 (arm shoulder)

1 Servo servo 1 (arm grasper)

2 Digital servo 2 (arm elbow)

3 Digital

4 SonarPulse sonar 0 (front)

5 SonarEcho sonar 0 (front)

6 SonarPulse sonar 1 (back)

7 SonarEcho sonar 1 (back)

8 Digital bump 0 (left)

9 Digital bump 1 (front left)

10 Digital bump 2 (front right)

11 Digital bump 3 (right)

12 Analog light sensor 0 (left)

13 Analog light sensor 1 (right)

14

15 gyro gyro?

16 QuadPhase0A encoder 0 (left motor)

17 QuadPhase0B encoder 0 (left motor)

18 QuadPhase1A encoder 1 (right motor)

19 QuadPhase1B encoder 1 (right motor)

Appendix B: Netbeans Remote Debugging

Being able to remotely debug your code while your robot is running is very useful. Netbeans supports the JDWP debugging standard, and will let you perform source-level debugging over a socket. The first step is to tell the JVM on the robot to listen for the debugger on a socket. Start your JVM with the remote debugging options:

java -Xrunjdwp:transport=dt_socket,address=9999,server=y,suspend=n [classpath, jar, and class files go here]
All the debugging magic goes in front of the standard class and jar file arguments. If you are building from the command line, you already know what all these arguments are. If you are building from Netbeans, it puts all the compiled classes in their separate directory structure. Build, sync, and navigate to this directory (or the moral equivalent) on your SBC:
/rss/rss_dev/netbeans/lab6/build/classes
And type something like this:

java -Xrunjdwp:transport=dt_socket,address=9999,server=y,suspend=n -cp ../.././../src/carmen/Carmen.jar:. WallFollow

(Be careful with the pathing to get to the Carmen.jar file.)

When your run your code, it should tell you that it is listening on socket 9999 for a debugger, then it will continue to run normally. You can re-use this command to run all your behaviors in the lab, just change the class you start with.

The fun starts with you want to debug your code remotely. Click on the blue “attach debugger..” arrow:

[image: image3.png]

And enter:

[image: image4.png]Attach

Debugger: [P0 Debugger

Connector; [Socketattach (Attaches by socket o other Wis) =

Transport: [at_socket

Host 152.168.1.4
port ==
Tineaut:

Cancel Help

replacing 192,168,1,4 with the name of your robot. If you are successful, it will quietly fall back to the code editor, but the debugging buttons will become active. You can now set breakpoints, inspect variables, and step into methods as if you were working on the robot directly. Happy bug hunting!

_1172156132.xls
Sheet1

		Port		Mode		Usage

		0		Servo		servo 0 (arm shoulder)

		1		Servo		servo 1 (arm grasper)

		2		Digital		servo 2 (arm elbow)

		3		Digital

		4		SonarPulse		sonar 0 (front)

		5		SonarEcho		sonar 0 (front)

		6		SonarPulse		sonar 1 (back)

		7		SonarEcho		sonar 1 (back)

		8		Digital		bump 0 (left)

		9		Digital		bump 1 (front left)

		10		Digital		bump 2 (front right)

		11		Digital		bump 3 (right)

		12		Analog		light sensor 0 (left)

		13		Analog		light sensor 1 (right)

		14

		15		gyro		gyro?

		16		QuadPhase0A		encoder 0 (left motor)

		17		QuadPhase0B		encoder 0 (left motor)

		18		QuadPhase1A		encoder 1 (right motor)

		19		QuadPhase1B		encoder 1 (right motor)

Sheet2

		

Sheet3

		

