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 Planning for point robots

— Visibility graph method

— Intermittent obstacle contact

* Ad hoc method of handling

robots with positive area
— Represent robot as a (2-DOF) disk

— Discretize Cartesian space, conservatively
But: some feasible paths

« Today: “configuration space” methods
— Reason directly in a space with dimension = #DOFs
— Transform there; solve problem; transform back




Today

» Configuration space
— Intuition

— Preliminaries
* Minkowski sums
» Convexity, convex hulls

— Definition
— Construction
* Rigid (low-DOF) motion planning
— Deterministic methods
* Articulated (high-DOF) motion planning
— Randomized methods

Intuition

« Suppose robot can move only by translating in 2D

» How can it move in the presence of an obstacle?
* Represent robot by its origin (how many DOFs?)
+ How to describe infeasible placements of robot origin?
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Infeasibility Under Translation
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Configuration Space

For a robot with k total motion DOFs, C-space is a
coordinate system with one dimension per DOF
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(Latombe 1991)

In C-space, a robot “pose” is simply
... and a workspace obstacle is a

Motion Planning Transformation
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Path is hard to express Path is just a space curve




Configuration Space Idea
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C-space Summary, Examples

@ * Define space with one dimension
@@ per DOF of robot motion / pose
» Map robot to a point in this space

» C-space = all robot configurations
» C-obstacle = locus of infeasible
configurations due to obstacle
Some example configuration spaces: Molecule with n
fixed-length bonds
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Convexity

» Aset S is convex if and only if every line segment
connecting two points in S is

* Which of these

are convex? @ @
S =

Convex Hull of a Set of Points

* Intuition: stretch a rubber band around point set
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Convex Hull: Formal Definitions

» Which of these are constructive / algorithmic?

Computing 2D Convex Hull
* Input: set S of N points (x;, y;) in 2D
« Output: polygonal boundary of convex hull of S
H[1]
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* How can Convex(S) be computed (efficiently)?




The Leftof Predicate

* Input: three points p, q, r
* Function Leftof (p, q, r) // argument order matters
« Output: 1 iff ris left of directed line pg, otherwise -1

r How to implement Leftof()?
1. Compute sign of determinant

1 r, 1
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2. Equivalently, find sign of z
component of

Brute Force Solution
Identify point pairs that form edges of Convex(S)

l.e. for each pairp,qe S,ifVreS—{p,q},rlies
left of the directed line pq,

Running time for input of n points?
Can do better: O(n?), O(n log n), O(nh), O(n log h) !




Jarvis March Algorithm

pivot = leftmost pointin S; i=0 // leftmost point must be on convex hull
repeat
H[i] = pivot /I store hull vertices in output point list H[i], 0 <i<h
endpoint = S[0] /I check candidate hull edge [pivot .. endpoint]
for j from 1 to |S|-1
if (Leftof (pivot, endpoint, S[j]))
endpoint = S[j] HIO]
pivot = endpoint; i++
until endpoint == H[0]

Hih-11
Outer loop runs times; * s, ¢Sl

inner loop does work * .

Running time for input (With h = )
set of n points? “Output-sensitive” algorithm.

Minkowski Addition

« Given two sets A,B € RY, their Minkowski sum,
denoted A@B,istheset{a+b | aeA beB}

— Result of adding each element of A to each element of B
» If A & B convex, just add vertices & find convex hull:
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Computation of C-obstacles

* Inputs: robot polygon R and obstacle polygon S
+ Output: c-space obstacle c-obstacle(S, R)

obstacle obstacle

y y

[ c-obstacle

C-obstacle Computation

1. Reflect robot R about its origin to produce R’
2. Compute Minkowski sum of R’ and obstacle S

obstacle

41

c-obstacle
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Sanity check: shaded region is infeasible for
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Why Reflect the Robot?

y
Robot
Obstacle
Reflection .

X

about origin

Shown above are contacts between
robot edges and obstacle vertices.
What happens when robot vertices
contact obstacle edges?

C-obstacles with Rotations

How do we compute this object?
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Back to Motion Planning

* Given robot and set of obstacles:
— Compute C-space representation of obstacles
— Find path from robot start pose to goal pose (point)
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* Unfortunately, we have a rather serious problem:
— We have constructed a representation of the obstacles
— But we need to search a representation of the freespace!

Computational Complexity

* The best deterministic motion planning algorithm
known requires exponential time in the C-space
dimension [Canny 1986]

* D goes up fast — already D=6 for a rigid body in
3-space; articulation adds many more DOFs

- Simple obstacles have “
complex C-obstacles -

« Impractical to compute _.
explicit representation
of freespace for robot . ) —
with many DOFs —

* What to do?
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Strategies
» Approximate: use regular subdivision of freespace
* Randomize: sample and evaluate C-space poses
» Sacrifice » for gains in

L—
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Example: Exact Decomposition
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Approximate Cell Decomposition

-
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» Advantage: recasts complex original problem as
search within space of many, simpler motion plans

Probabilistic Road Maps for
Motion Planning [Kavraki et al. 1996]

Roadmap Construction (Pre-processing)

1. Randomly generate robot configurations (nodes)
- Discard invalid nodes (how?)

2. Connect pairs of nodes to form roadmap edges
- Use simple, deterministic local planner
- Discard invalid edges (how?)

Plan Generation (Query processing)

1. Add start and goal poses into the roadmap
2. Find path from start to goal within roadmap
3. Generate a motion plan for each edge used

Requires two primitive operations:
1. Method for sampling C-Space points
2. Method for “validating” C-space points and edges

14



PRMs: Pros and Cons
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Advantages

1. Probabilistically complete
2. Easily applied to high-dimensional C-spaces

3. Supports fast queries (w/ enough preprocessing)

Many success stories in which PRMs have been
applied to problems previously thought intractable

Disadvantages

PRMs don’t work well for some problems:

Sampling Around Obstacles:
OBPRM [Amato et al. 1998]

To navigate narrow passages we must sample inside them
Most PRM nodes placed where planning is easy, not where it's hard

PRM Roadmap

OBPRM Roadmap
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Idea: Can we sample nodes near C-obstacle surfaces?
* We cannot explicitly construct the C-obstacles, but...
* We do have models of the (workspace) obstacles!
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Finding Points on C-obstacles

Basic Idea (for workspace obstacle S)

1. Find a point in S’s C-obstacle
(robot placement colliding with S)
2. Select random direction in C-space
3. Find freespace point in that direction
4. Find boundary point between points
using binary search (collision checks)

Note: we can use more sophisticated
approaches to try to “cover” C-obstacle

Summary

Introduced drastically simplifying transformation
— Based on two useful geometric constructions
Enables use of familiar techniques...

— Discretization

— Random sampling

— Bisection

— Graph search

... To solve high-dimensional motion planning

We’'ll use these ideas in Lab 6 (path planning)
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