Phantom Sight Reader

Abstract

Phantom Sight Reader converts sheet music to audio output. It captures an image of the
sheet music from an external camera, detects the notes, and finally synthesizes the audio. It is
comprised of three components: image capture and video display, note recognition, and audio
generation. Image capture involves interfacing the external camera with the FPGA and capturing
a still image to memory. The video display is the user interface that allows the user to interact
with the Phantom Sight Reader by telling it to play notes or allowing selection of different
instruments. Note recognition involves determining the location of the staff and then identifying
whole notes, half notes, and quarter notes along with their position on the treble clef in one
octave. Audio synthesis entails generating and combining sinusoidal tones so that they emulate
the sound of real instruments. The final goal of this project was to read sheet music and produce
instrument sounds corresponding to the notes.

Lance Collins
Jing Han
Dilini Warnakulasuriyarachc

December 10, 2008

Table of Contents

page

@ PTOJECT OVETVIEW ...oviiiiiiiiiiieeiieee ettt e ettt e e e st e e et eeeeataeeeeennaaeeeennsseeeesnsseaeeennneens 06
® Video DiSplay Unit.......cccuiiiiiiiiiiiiiceiie ettt ettt e siv e e ev e e e aseeeaaeeesaeesnneae e 07
O MoOdule DeSCTIPLIONS.ceeviiiiieiieiie ettt ettt ettt ae et e sate b e seaeebeesaaeenseenees 08

B NTSC Decoder BIOCK & Filter........cooiiiiriiniiiiinieieeieeeceeeee e 08

B Orientation BOX.....ooioiiiiiiiie e 09

B Frequency Display BOX......ccciiiiiiiiiiiiiiiie ettt 09

B UNAEITINE. ...ttt et st e st e b e s 09

B MOUSE POINTET....coiiiiiiiiiiie ettt et 10

B PLAY, PAUSE, and STOP BULIONS.......coooouuiiiiiiiiieiiiiiiiieeeeeeeeeieieee e e 10

m Instrument Selector BULtONS........cc.coouiiiiiiiiiiiieieeieceeeeee e 11

B Volume Control SHAET.........coiiiiiiiiiieeee e 11

o Testing and Debugging: Video Display.........cccceeveiiieiiiieiiieeiieeieeeeeee e 12

o Further Enhancements: Video Display.........cccceeeiieiiiiiiiiiiecieecee e 13

® OVverview: NOte DECOMRT.......cccuiiiiiiiieie ettt ettt 14
o Detailed Description of Note DeCOeT...........ccceecuieriieiiiiniiiiierieeieeeee et 15

B The BRAM filter MOdUle........c.cooiiriiiiiiiiiieieeeee e 16

m The Staff Finder module............cccoooiiiiiiiiiiiieeeeeee e 17

m The Staff Display module...........cccoeeeiiiiiiiieieeeeeeeeee e 18

m The Note Finder module............cccooiiiiiiiiiiii e 18

B Scan Local ModULe.... ..o 19

m The Count Space MmOdUIE............cccueriiiiiiiiiiiie e 20

B FINd NOTE STAE....oouiiiiiieiiecee ettt et 20

m Beat Finder Module..........coooooiiiiiiiiiiie e 21

B The Minor FSM moOdule........cccooiiiiiiiiiiieeeeee e 22

B BRAM DeciSion MOAUIE.........coouiiiiiiiiriiiiiiieieeie st 22

B Note BRAM MOAUIE........ccuoiiiiiiiiieiiieeceeee e 24

o Testing & Debugging: Note DeCOdET............ccvvuiieiiiieiiieeiee e 25
o Further Enhancements: NOte DECOET..........cocuiriiriiiiiiieniiienieeeeceeee e 27
© AUAIO GENETALOTeuieniieiieieieteete ettt ettt ettt et e s bt e bt et e esee bt entesaeenbeentesaeenee 28
o Overview and Background.............ccccvieriiiiiiiiiiiiiie et 29
B AUAIO SYNERESIS....eeiiiieciie et erae e 29

L N G PSSR 29

@ Sine Wave GENeTation.......cccueeriiriiiniieniieiienie ettt s 29

o Amplitude MOdUIation..........cccuveriieiiieiiecie ettt 30

o Detailed Description: Audio GENETAtOT..........cccveeriieeriieeiieeeieeeiee e eeiee e seee e 31
N 16 TO TN 111 1 () /< SRR 31

B TONE SCIECTOT....coueiiiitieiie ettt ettt et s et e et e e sbeesateenee e 31

B Sine Wave GeNeTatioN..........ciiiiiiiiiiiiiiie ettt ettt 31

@ TONE PATAMELETS. ...c.uiiiiiiiiiiiieeieecee et 31

® Thetd MEIMOTYcociieiieiiieiiecie ettt ettt ettt et et eebeesaeeenbeessaeensaennneans 32

@ SiNe CalCUulator....c..eiiiiiiiiiiii e 32

B THMDTC. .ot 32

o Timbre Transformer..........cccooiiiiiiiiiii e 32

® INSIrUmMENt GENETALOT.coiiuiiiiiiiiiiie ettt ettt e s s 32

o Harmonic Parameters...........coocveriiiiiiiiiiiiciiccceeceeee e 33

® ADSR Parameters.......ccoueiiiiiiiiiiieiieenieeeie ettt 33

@ Note State RAM....oc.oiiiiiii et 33

® ADSR Scale GeNeTrator.......cccuuiiiiiiiiiiiieiieeieete ettt 33

e Harmonic Scale GENETatOr...........cceriiriiriieieriieieeeseeee e 34

@ INOLE SCALET ..ottt 34

B PlaybacK... .o e 34

@ Ky Press MEMOTY.....ccoiiiiiiiieiiiiee ettt e e e e e e e e e e e 34

@ SHEet PlaYer......coocuiiiiiiiiciee ettt e e e e naee s 34

@ EVENt PLAYET....coiiiiiiiiice et s 35

o Testing and Debugging: Audio GENETAtOT............cceevuierieeriienieeiieeieeieeere e eee e 35
o Further Enhancements: AUdio GENETALOT...........c..coueervieiieeirieeiieeieerteeieesieeeveeneneeeveens 38
Integration of individual design COMPONENLSccceeeviieeiiieeiiieeie e 38
Testing & debugging the overall SYStem............cccciiieiiiiiiiiiieiee e 39
L670)1161 1] 10 1 TR USRS 40
RETETEIICES. ...ttt ettt et st eaees 41
FN 0] 015311 | SO USRS 42

List of Figures:

6 6 6 6 6 6 6 6 6 6 6 6 66 6 66 6 © o©

Page
Figure 1: System Block Diagramcoooiiiiiiiiiiii i e e e 06
Figure 2: Image of complete video display and note detection units........................... 07
Figure 3: Image of the staff, 08
Figure 4: Frequency diSplay DOX........c.oiiuiiiiiiiiii e 09
Figure 5: FSM showing state transitions for PLAY, PAUSE, and STOP..................... 10
Figure 6: PLAY, PAUSE, and STOP buttons, & instrument selector buttons................ 11
Figure 7: Volume slider with mouse pointer...............cooeiiiiiiiiiiiiiiiiieeeee, 12
Figure 8: Block Diagram of the Note Detection module...................oooiiiiiiiiiii. 15
Figure 9 : The BRAM filter PrOCESS.uiuintitiii e 16
Figure 10: The FSM of the Note Finder Module.................c.ooii, 18
Figure 11: The Staff Coordinates.............coiuiiiiiiii e 19
Figure 12: The Count Space module..............ooiiiiiiiiiiii e 20
Figure 13: Noted ona staff....... ... e 21
Figure 14: MInor FSM. ... o 22
Figure 15: The BRAM Decision FSM.ot 23
Figure 16: Final note information................ccooiiiiii i e, 24
Figure 17: Audio Synthesizer Block Diagram.................ccooiiiiiiiiiiiiii e, 28
Figure 18: Integration signals displayed on the analyzer.....................c.ooiiiii 40

Project Overview

The purpose of Phantom Sight Reader is to play sheet music as if it were playing from a
real instrument (piano, violin, flute, or cello). The project allows some simple sheet music to be
printed out and played back. The user can play, pause or stop using the user interface in addition to
selecting an instrument and changing the volume. The project is divided into three high level
modules that control a particular area of functionality: Video Display and Filter, Note Decoder and
Master FSM, and the Audio Synthesizer.

The Video Display allows for user input and outputs the note played to the user by
underlining the note in the captured image and by showing it on a frequency chart. The Filter
converts the image into a strictly black and white pixel format. This filtered format is taken in by
the Note Decoder to recognize staffs and notes. The Master FSM orchestrates the process of
decoding and enabling playback. The Audio Synthesizer contains all the logic for generating audio
for the different instruments and playing back note data. The Block Diagram of the design project
is given under figure 1 below.

Pixel . .
Camer > Video Display |q
== Unit & Filter (by |

Pixel

Marker, |pjay pause,stop,

nstrument_select

‘ nhote
Pixel

) Note Decoder
Displa [—
P & Integration

I
ZBT (by Dilini)

addr note

Sound_o Audio
AC97 ———p Synthesizer

read (by Lance)

note_memory_

Figure 1: System Block Diagram address

Video Display Unit

(by Jing Han)

The Video Display Unit provides an intuitive user interface. Functionalities include: a
camera interface that displays the staff, including a grayscale-to-B&W filter that allows for easy
detection of the staff and notes; the Orientation Box, which indicates to the user an optimal region
in which to place the staff; the Underline, which will indicate on the staff which note is being
played in real time; the Frequency Display Box, which displays the frequency of the note being
played in real time; a mouse to allow user interaction; PLAY, PAUSE and STOP buttons, which
allow the user to control the music being played; the Instrument Selector, which lets the user select
which instrument to play; and the Volume Control Slider, which allows the user to adjust the
volume.

LA FREQ(HZ) 660

Figure 2: Image of complete video display and note detection units.

Module Descriptions

NTSC Decoder Block & Filter

The NTSC decoder blocks consist of several modified pre-written modules [1]. The
video decoder.v file, which consists of the ntsc_decode module, the adv7185init module, and the
i2c module, grabs 10-bit YCrCb data from camera. The ntsc2zbt.v file consists of the ntsc_to zbt
module, which stores 8 bits of Y (luminance) value, in grayscale to each ZBT location.

The filter is implemented by modifying the ntsc_to_zbt module (Figure 3). Its function is
to convert the grayscale pixels output from ntsc_to zbt into black and white pixels. A control
switch, switch[5], turns the filter on or off. A user-adjustable threshold determines the value
(between 0 and 256) at which a pixel is discriminated, i.e., if the threshold value is 170, pixels
whose value is greater than 170 will be converted to black, and those less than or equal to 170 will
be converted to white. A counter is created so that the threshold value increments or decrements
every 1/10 of a second by pushing the up or down button on the labkit. An 8-bit Y value (now
either all 0 or all 1) will then be sent to the display and also to the ZBT for further processing. The
code that stores data to ZBT was borrowed from a sample module from Fall 2005 [2].

Since the data will be easier to process if the image is frozen, a switch (switch[6]) is
implemented to freeze the data on the ZBT. This is done simply by stopping the write enable
signal (ntsc_we) when switch[6] is on.

|—,

-

Figure 3: Image of the staff with two whole notes before filtering (left), and after filtering (right).
Both images show the Orientation Box (thin black lines surrounding the staff), and the figure on
the right shows the Underline (thick black line under the first note).

Orientation Box

A box is drawn on the image display to indicate where the staff lines should manually be
placed in front of the camera to ensure optimal positioning for image capturing (Figure 3). The
size and location of the box were found by guess and check.

Frequency Display Box

The frequency display module displays the frequency of the note being played in real time
(Figure 4). The x-axis displays frequencies in the range 330Hz to 660Hz (notes F through E on the
treble clef), where the width of each pixel corresponds to one frequency. The height of the
frequency bar is fixed. A look-up-table (LUT) is used to match the note being played with its
corresponding dominant frequency (i.e., the harmonics are not displayed). Depending on which
address it is currently reading from, the corresponding frequency at that address will be displayed.

338 ppEqcyzy 660

Figure 4: Frequency display box displaying 350Hz, corresponding to F on the treble clef.

Underline

A thick black line underlines the note being played on the staff in real time (Figure 3). This
capability receives a start_hcnt value (the hcount value where note recognition begins) and an
underline width value (the width of the region the note recognition unit is evaluating) from the
note recognition unit, which determines where the width of the underline and where it starts. Then,
the underline will move according to the address sent by the music playing unit corresponding to
the note being played.

Mouse Pointer

A mouse pointer is implemented as a small box sprite that allows the user to intuitively
interact with the prototype [3].

PLAY, PAUSE, and STOP Buttons

Three buttons that enable the play, pause, and stop functionalities are implemented (Figure
6). Each is a one bit signal that controls the music player unit. The strings PLAY, PAUSE, and
STOP are displayed within the regions allocated for the corresponding buttons using sample code
from Fall 2005 [4]. The state is determined when the mouse is clicked in the region of the
corresponding button. A simple finite state machine (FSM) is used to control the state transitions
(Figure 5).

STOP

play_signal=0

btn_click AND

s hiibAan AvAA

A

(btn_click AND

. PLAY
(btn_click AND ston button area)
stop_button_area) play_signal=1
OR reset btn_click AND
PAUSE .
btn_click AND
play_signal=0 pause_button_area

Figure 5: FSM showing state transitions for PLAY, PAUSE, and STOP.

10

PLAY PIANO
PRUSE UIOLIN

sTOP CELLO
FLUTE

Figure 6: PLAY, PAUSE, and STOP buttons, as well as instrument selector buttons.

Instrument Selector Buttons

Four buttons allow the user to select which instrument to play (Figure 6). The current
prototype includes the piano, violin, cello and flute. The strings PTANO, VIOLIN, CELLO and
FLUTE are displayed within the regions allocated for the corresponding buttons using sample
code from Fall 2005 [4]. The desired instrument is selected when the mouse is clicked in the
region of the corresponding button. The music player unit receives a 2-bit signal that indicates
which instrument is selected.

Volume Control Slider

A volume slider allows the user to intuitively adjust the volume by dragging the slider up
or down using the mouse (Figure 7). The slider bar is a sprite that changes location according to
where the mouse drags it. A formula was used to convert the pixel values to the corresponding
volume:

temp value <= 736-top of slider;

volume <= temp_value [6:2];

Where temp_value is 8 bits wide (about the number of bits required to designate a vcount
value), and volume is 5 bits wide. 736 is the vcount of the bottom (maximum vcount) of the slider
box. Eliminating the last two bits of temp value (by only taking [6:2] of temp_value)has the effect
of dividing by four and rounding down, which eliminates the potential issue of non-integer results

11

when dividing. The volume slider box is 121 pixels tall. Volume has a range of 0-31, and
121/4=30 when rounded down. Thus, by dividing the pixel number by 4, we can convert pixel
value to volume.

Figure 7: 1) Volume slider with mouse off to the side, and 2) mouse moving slider.

Testing and Debugging: Video Display

NTSC Decoder Block

The threshold adjuster was tested by displaying the threshold value on the 64-bit hex
display on the labkit. The filter is tested by seeing the image output on the display.

Frequency Display Box

Intially, the frequency display module was tested by hard wiring the frequency values.
Upon integration, it was tested by seeing whether the frequency bar changes to the correct
frequency corresponding to the note being played.

Underline

Initially, assuming the signal enabling the underline to move would be a pulse sent from
the music playing unit, the underline capability was tested by simulating the pulse using a button
push and seeing the underline move as the notes are played. A counter was created to cause the
underline bar to move every second. In the actual integration, the address of the note being played,
passed from the music playing unit, is used to determine the location of the underline.

12

Mouse Pointer

The cursor box representing the mouse is displayed on the monitor. The occurrence of a
button click is indicated by the lighting of an LED.

PLAY, PAUSE, and STOP Buttons

The state of the FSM is displayed on the hex display, and the signals being sent are
displayed on the LEDs.

Instrument Selector Buttons

To verify the correct instrument value was sent, the 2-bit signal value was displayed on the
hex display.

Volume Control Slider

The unit was tested in two phases: first visually, then combining with audio. The volume
slider must travel smoothly up and down as well as stop at the top and bottom of the slider box.
Audio modules from Lab 4 [5] were used to test the volume control using a 750Hz tone.

Further Enhancements: Video Display

The frequency display box could be further developed into a frequency analyzer that
displays all the harmonic frequencies being played at any given time along with their
corresponding amplitudes. In addition to its purpose of visual gratification, it can serve as a useful
debug tool for the music player unit.

13

Overview: Note Decoder

(Dilini Warnakulasuriyarachchi)

Once an image is captured by the NTSC camera and stored in the ZBT, the next step in the
design project is to identify the notes on the music staff. This process is called Note Detection. In
the Note Detection process there are three main sub categories: staff detection, note identification
and the beat detection. Staff detection is important because before a note can be identified, we
need to locate the staff on the captured image. Once we know the location of the staff we can
narrow our analysis of the image to that particular region. We perform further analysis to identify
the note. Then we will identify the beat of each note on the staff before data is sent to the audio
generation module designed by Lance Collins. Each module under the staff detection, note
detection and beat detection process is described in detail below. A block diagram of this part of
the project is given under figure 8.

14

Master FSM

Pixel value

Note Decoder BRAM Filter

Minor FSM
BRAM Decision

Beat Finder Note Finder Staff Finder

Figure 8: Block Diagram of the Note Detection module

Detailed Description of Note Decoder

The first module that is used to interact with the ZBT is the BRAM Filter Module. After
the data in the ZBT is filtered by this module the Note Decoder will no longer interact with the
ZBT. It will access the BRAM where the filtered version of the image is stored. The Note Decoder
contains Minor FSM module which controls the Staff Finder Module, the Note Finder Module and
the Beat Finder module. Under the Staff Finder module the Staff Display module can be found.
This module is used for debugging purposes. Under the Note Finder Module, the Count Space
module and Scan Local module is utilized to evaluate the black pixels in the captured image. The
Note BRAM Module and the BRAM Decision Module was created to ease the access of the
BRAM. The following paragraphs contain a detailed description of each of these modules under
the Note Decoder.

15

The BRAM filter module

The image stored in the ZBT is the image captured from the NTSC camera. Therefore due
to various lighting conditions and the quality of the camera, there can be various pixel errors in the
image. To correct such pixel errors, a filter is required before the image is further processed. The
ZBT stores data 8-bits per pixel. Once the image is filtered this 8-bit data will be converted to a 1-
bit value which will take “1” if the pixel color is white or “0” if the pixel color is black. Since we
only store 713 X 500 pixels, a Block Random Access Memory (BRAM) was used to store the
filtered output. The memory was created using CoreGen and Architecture Wizard available in the
Xlinx software package. It is a single port block memory with a width of 1-bit and a depth of
2719. The logic behind the BRAM filter is explained below;

Two sets of errors can occur during image capturing. "Hreofirst error occurs when there is a
black pixel surrounded by a white space (white pixels). For example in a music sheet, space
between two staff lines is white. However due to lighting conditions there can be few black pixels
in this region. The second error occurs when there are white pixels in a region which should
contain only black pixels. For instance a white pixel might occur on a staff line which must be
black. To correct these two errors the BRAM filter was programmed in a manner that it allows a
pixel color to change only if the two proceeding pixels are of the same color. This logic is able to
correct the above errors even if two white/black pixels are situated next to each other in a region
which should be black/white. The following image in Figure 9 will explain this program
graphically.

The incorrect pixel O OO o o o . o 0 O
row

The filtered result
Figure 9 : The BRAM filter process

As shown in the diagram above the first row of pixels contains two white pixels in a staff
line. The filter will change these two white pixels into black pixels because the previous two
pixels were black. As shown in the figure above the filter shift the original image to the right by
two pixels since it only allows a pixel to change its color if the to proceeding pixels are of the
same color.

16

The Staff Finder module

The goal of this module is to identify where the staff is located on the captured image. The
Staff Finder module will identify the horizontal pixel count (hcount) and the vertical pixel count
(vcount) of the start of a staff and also the start of the second, third fourth and fifth staff lines. The
program for this module performs this task by scanning the image row-wise and identifying a line
when it encounters 150 continuous black pixels in a row. It identifies a white row when it
encounters 150 white pixels continuously in a row. The program is explained in detail below:

There are several counters in the program. They are: 1) the line counter, which keeps track
of the number of lines found, 2) the white pixel counter, which keeps track of the number of white
pixels encountered in a row, and 3) the black pixel counter, which keeps track of the number of
black pixels encountered in a row. Another important register is also used which is named the flag.
The flag register keeps track of the beginning and end of a single staff line. This is required
because the single staff line can be several pixels wide. The flag is raised when the first row of
black pixels are encountered. Then the line counter is incremented by one. The program will
disregard the next set of black rows it identifies until it encounters a white row. Then the flag is set
to 0. The program continues to scan the image row-wise until it encounters the next black row.
The flag is raised once again and the line counter is incremented by one. This recursive process
continues until the line counter reaches the value 5.

The vcount and hcount of the start of each staff line are identified by noting the location of
the first black pixel encountered in a row when all the proceeding pixels were white. The program
identifies the first black pixels by checking whether the pixel color is black and if so it checks
whether the black pixel counter is zero. If it is zero then it determines that the current pixel is the
first black pixel in that particular row. However there still can be image errors even after filtering
the image stored in the ZBT. To ensure that the black pixel the program encountered is not due to
such an error, the vcount and hcount of the current pixel is noted in temporary registers. Once the
line counter is incremented the data stored in the temporary registers are moved to permanent
registers.

The Staff Finder module needs to interact with the BRAM to obtain the pixel values.
Therefore this module will generate the BRAM address of each memory location as the image is
scanned row-wise. The formula used to calculate the memory address is given below.

Bram_addr3 = (hcount — XSTART) + (vcount — YSTART) * XRANGE +
(vount — YSTART)
Formula 1

The image from the camera is displayed on the screen with resolution 1024 X 768.
However the image is not displayed on the entire screen. It is limited to a window sized 713 X
500, starting at the pixel hcount 44 and vcount 64. The BRAM address however starts at 0 and
increments by one. Therefore the above formula was generated to access the correct BRAM

17

memory location based on the pixel scanned by the module. Based on the coordinates of the
widow used to display the image, the XSTART is set to 44 and YSTART is set to 64. The
XRANGE is 713. The hcount and vcount is set to start at 64 and 84 respectively. This was done to
scan the image 20 pixels inward from its edge to overcome and edge distortions that may have
occurred when the image was capture. The BRAM address starts at 0 and continues up to 357,713.

The Staff Display module

This module was created to ensure that the Staff Finder module functions correctly. The
inputs into this module are the hcount and vcount of the start and of the staff. The Staff Display
module uses this information and displays on the screen the identified region. If the Staff Finder
module provides the correct information the staff is displayed on the screen. The Staff Display
module functions as follows;

The module checks if the current pixel hcount and vcount on the screen is within the start
and end coordinates of the staff. If it is, the pixel value of the current pixel is obtained from the
BRAM and sent to the display module. The BRAM memory address is calculated once again
according to the formula 1 given above.

The Note Finder module

The Note Finder module’s goal is to identify the notes on a staff. This module functions as
a Finite State Machine (FSM) with four states. The diagram of the FSM is shown below under

figure 10. note_enable

Inactive >

State

cnt_note = 0 cnt_notg<= 0 local_scan_don

cnt_done

Figure 10: The FSM of the Note Finder Module

As shown above in figure 10 , the FSM comprises of four states. At power on the initial
state is the INACTIVE state. Once the note_enable signal is set to “1” the state transitions to the

18

LOCAL SCAN state. This state enables the Scan Local module which identifies where the staff
lines are situated local to the notes. Once the local scan done signal is enabled the state
transitions to the SCAN SPACE state. This state will count the number of black pixels in the four
spaces where a note is located. Once the cnt_done signal is enabled by this module the next
transition is to FIND NOTE state. The FIND NOTE state will compare the number of black pixels
in each space and identify the note. Once this state is reached, the Note Finder module checks
whether the cnt_note counter, which contains the number of notes in a single staff is zero. If it is
zero then the next state transition is to the INACTIVE state. If the cnt_note counter is not zero, it
means there are other notes to be located. Therefore the next state transition is to the LOCAL
SCAN state. Each sub module under the Note Finder is explained in the subsequent sections. .

Scan Local Module

This module’s goal is to identify where the staff lines are located local to the notes. This
module is slightly similar to the Staff Finder module. However, it is an important module. If we
observe the image captured from the NTSC camera, we can notice that the staff lines tend to curve
due to the circular nature of the camera lens. Therefore even though the Staff Finder module
locates the hcount and the vcount of the start of the staff lines, towards the middle and end of the
staff these coordinates may vary. To overcome this problem, the Scan Local module is introduced
to identify the staff lines local to the notes based on the information given by the Staff Finder
module. The logic behind this module is as follows.

The Scan Local module expects the start and the end hcount values of the region where a
note will be located. For instance if there are only two notes on a staff the entire window will be
split into two halves and each individual half is evaluated separately. This module will start to
scan the pixel colors in a vertical line starting at 10 pixels above the vcount of the start of the staff,
identified by the Staff Finder module. If the pixel color is black and a “flag” is zero the line
counter is incremented by one and the vcount is noted. This vcount denotes the start of a staff line.
If the pixel color is white and the “flag” is set to 1 then this vcount is noted since it will be the end
of the staff line. According to this program each staff line will have two vcount values associated
to it. The exaggerated diagram of a staff given below under figure 11 further explains this process.
The output of this module will be 10 vcount values associated with the five staff lines.

//—

L
start of the line O

vcount of the

Figure 11: The Staff Coordinates

19

The Count Space module

This module is associated with SCAN SPACE state under the Note Finder module. The
purpose of this module is to count the number of black pixels in the four spaces between the staff
lines identified by the Scan Local module. The program for this module functions in the manner
explained below.

This module receives the vcount values of the five staff lines from the Scan Local module.
During each clock pulse, it starts to scan the image within the localized region where a note is
expected to be located. It counts the number of black pixels in regions which is defined by the
vcount of the end of a line and the vacount of the beginning of the next line. Since lines can be
curved due to the curved nature of the camera lens, the scanned regions is narrowed by counting
the number of black pixels defined by 8 pixels inward from the vcounts. The following diagram
shows this process graphically.

Two 8 pixels inward

consecutive
staff lines

Black pixels are
counted within
this region

Figure 12: The Count Space module

As seen in the figure above, Count Space ensures that the staff lines are not considered
when counting the black pixels. The output of this module will be four values (pixel cntl,
pixel cnt2, pixel cnt3 and pixel cnt4) which contain the number of black pixels in the four spaces
between the five staff lines.

Find Note State

This module is not a separate module. It is contained within the Note Finder module. The
logic for this module is utilized when the Note Finder module reaches the FIND NOTE state. This
section uses the four pixel cnt values given by the Count Space module to determine where a note
is located. There are two possible locations a note can be on a staff. It can either be on one of the
four spaces or on one of the three lines. The note can not be on either the top or bottom staff line
because we placed that design constraint to help us locate the staff.

20

If a note is located on a space then the pixel cnt relating to that space will have number of
black pixels and the other pixel cnts will contain zero values. If a note is located on a line, the two
spaces upon which the note is on will have black pixel counts, and other spaces will contain zero
black pixels. To identify the note, the spaces are evaluated as given below.

If the first space contains the maximum number of black pixels compared to the other three
spaces, the note is on that space or on the line at the end of that space. Therefore, the number of
black pixels on the first space is compared with the number of black pixels on the second space. If
the number of black pixels in the first space is greater that number of black pixels in the second
space plus a threshold value, then the program decides that the note is on the space instead of the
line. The note is noted as “E”. However, if the number of black pixels on the first space does not
exceed this combined value (number of black pixels in second space plus a threshold value), the
note is considered to be on the line. Then the note is noted as “D”. This same process is repeated
based on the space with the maximum number of black pixels. The threshold value was
determined by trial and error process.

Beat Finder Module

The Beat Finder module determines the duration of a note. A note can be a whole note, a
half note or a quarter note. Once the Note Finder module was fully functional the Beat Finder
module was easy to implement. This module uses the black pixels counts of the fours spaces and
adds them together. Then it evaluates whether the total number of black pixels are less than 200. If
they are less than 200 then the beat was defined as a whole note. If the number of black pixels are
between 200 and 250 the beat was defined as a half note. If the number of black pixels exceeded
250, the note was defined as a quarter note. The reasoning for this process is explained by the
diagram in figure 13.

Semibreve Minim Crotchet

Figure 13: Noted on a staff

As seen in the figure above the whole note (semibreve) will have the minimum number of
black pixels compared to the Minim and Crochet. Generally, the number of black pixels, when the

21

note is a whole note was below 200. The Minim will have the second highest black pixels. The
Crotchet will have the maximum number of black pixels.

The Minor FSM module

The Minor FSM module integrates the Staff Finder module, the Note Finder module and
the Beat Finder module. This FSM is comprised of four states: STAFF, NOTE, BEAT,
INACTIVE. The state machine is shown in the following figure 14.

enable_mfs

Inactive
State

<taff dane

beat_done

note_done

Figure 14: Minor FSM

As seen in the above diagram, the power on state is the INACTIVE state. Once the
enable mfsm is set to “1” by the Major FSM, the state transitions to the STAFF state. This state
enables the Staff Finder module. Once the Staff finder module locates the staff on the image, it
sends a staff done signal to the Minor FSM module. Then the next transition is to the NOTE state.
This state enables the Note Finder module. When a note_done signal is received from the Note
Finder module the Minor FSM module transitions to the BEAT state and enables the Beat Finder
module. Once the beat done signal is received from the Beat Finder module the Minor FSM sends
a mfsm_done signal to the Major FSM.

BRAM Decision module

The BRAM memory is accessed several times by modules such as the Staff Finder module,
the Scan Local module, and the Count Space module under the Note Finder module. Therefore, it
is important to ensure that correct memory locations are accessed in these modules. The BRAM
Decision module was created for this purpose. This module is also activated as a finite state

22

machine with 6 states: DATA_WRITE, DISPLAY BRAM, TO STAFF, DISPLAY STAFF,
L_SCAN, and SPACE.

The power-on state is the DATA_ WRITE state. This state ensures that data stored in the
ZBT are filtered via the BRAM Filter module and written into the BRAM. This is the only state
where data is written into the BRAM. In all other states data is read from the BRAM. Once the
state machine leaves the DATA WRITE state it never returns to this state unless the reset button
is pressed.

From the DATA_ WRITE state there are two possible state transitions: DISPLAY BRAM
or the TO STAFF state. DISPLAY BRAM was introduced as a debugging state to ensure the
filtering was done correctly. TO_STAFF state interacts with the Staff Finder module to locate the
staff on the image. Once the staff done signal is enabled, the BRAM Decision module can
transition to the DSIPLAY STAFF or the L SCAN state. DISPLAY STAFF state is another
debugging state which accesses the BRAM and displays on the screen the region where the staff
was identified by the Staff Finder module.

The L SCAN state interacts with the Scan Local module to locate the staff lines local to a
note. Once the local scan_done signal is enabled the next state transition is the SPACE state. This
state interacts with the Count Space module to count the number of black pixels in each space.
The FSM is displayed under figure 15.

sw_test=1

DISPLAY

SR AR sw_test=1
staff_enable

staff_enable

local_scan
sw_test=2

DISPLAY
_STAFF

enable_local
_scan

23

Figure 15: The BRAM Decision FSM
Note BRAM module

This module was created to store the final note information in order to be accessed by the
Audio unit. A BRAM was created to store the note information. The inputs into this module is the
16-bit note information provided by the Note Finder module and the 16-bit beat information
provided by the Beat Finder module. Once the enable note bram is set to “1” by the Major FSM,
the Note BRAM module is activated. A counter is used in this module to keep track of the number
of notes. For instance if a staff contains four notes, the counter is set to four at the beginning. Once
this module is enabled, the 16-bit note information and the 16-bit beat information is and together
to produce a 16-bit note. The format of this 16-bit note is shown under figure 16.

From the

Note Finder

Module
From the

0(0j0|0(0O|O]|O|OfO]O|0O(1]0]|0fO0]O0
Beat Finder
Module

0(0j0|0(0O|O|O|OfO]|O|O(1]0]|0fO0]0O0
Final Note

Figure 16: Final note information

As seen in the figure above, the Note Finder module produces a 16-bit data for each note
on the staff. According to the figure above, the note identified by the module is an “A”. The Beat
Finder module produces another 16-bit data that defines whether the note is a whole note, half
note or a quarter note. The key used to differentiate the three beats is as follows:

Whole note:

24

Half note:

Quarter note:

Therefore in the figure **** the note “A” is a quarter note. The Final Note in the figure
**** is the result the program obtained by performing the AND function between the note
information and the beat information. This will be stored in the BRAM to be accessed by the
Audio module. The most significant bit (MSB) and the bit before the MSB are used to indicate the
final note in the staff. For instance, if the staff contains four notes, the MSB and the one before the
MSB is set o0 “1” in the fourth note before it is stored in the BRAM.

Testing & Debugging: Note Decoder

Testing and debugging of the Note Decoder section is very important to ensure that correct
notes are passed into the audio module before it is played. Most of the testing and debugging for
the modules under the Note Decoder section of this project was done using the hexadecimal
display on the labkit and the logic analyzer. At times the data was also displayed on the computer
monitor to visually verify the outputs. The testing & debugging of each module is described in
detail in the subsequent paragraphs.

The BRAM Filter module

As explained under the BRAM Filter module this program attempts to correct pixel errors
that may occur due to the lighting on the image and the camera quality. This module was
debugged by displaying the filtered image on the computer monitor and comparing it with the
original image stored in the ZBT. A much cleaner image was displayed on the screen as a result of
this filtering.

25

The Staff Finder module

The Staff Finder module identifies where the staff is located on the sheet of paper scanned
by the camera. Two methods were used to test this module. The first method was to display the
start hcount and vcount of the staff as well as the number of lines recognized by this module on
the hexadecimal display on the labkit where the project was prototyped.

The second method that was used to debug this module was to display the identified region
on a screen by using the Staff Display module. If the Staff Finder module functions correctly, the
staff is displayed on the screen.

The Scan Local module

The Scan Local module was tested by displaying the identified vcounts of the lines on the
hexadecimal display. Then these values were compared with the values found by the Staff Finder
module. If the lines identified by the Scan Local module lie within the region identified by the
Staff Finder module, it was decided that the Scan Local module functions as expected.

The Count Space module

The Count Space module was debugged by observing the pixels counts of each space on
the hex display and also analyzing the vcount and hcount on the logic analyzer. For instance if the
note is located on a space then pixel count for that space will contain some value and all the other
pixel counts will be zero.

The Note Finder module

The Scan Local module and the Count Space module fall under the Note Finder module.
Therefore, when the Scan Local module and Count Space modules were tested the Note Finder
module was also partially tested. The section that was not tested was determining the note.
Therefore the output of this module which is the note was displayed on the hexadecimal display to
test the accuracy of this decision making.

The Beat Finder module

The Beat Finder module determines the beat of the identified module. It was convenient to
test this module by simply displaying the identified beat on the hexadecimal display.

26

The Note BRAM module

The Note BRAM module was used to store the final notes in a BRAM to be accessed by
the Audio module. This module was also tested by displaying the address of the BRAM and the
data from the BRAM on the hexadecimal display.

The Minor FSM

As described in the previous pages the Minor FSM integrates the Staff Finder module, the
Note Finder module and the Beat Finder module. Therefore this module was tested by ensuring
that all the three sub modules function as expected after being integrated together.

Further Enhancements: Note Decoder

Due to the time constraints, the Note Decoder section of this design project was
successfully implemented to identify two whole notes on a single staff. However this functionality
can be further improved to identify the half notes and the quarter notes and also to identify
multiple staffs as well as multiple notes.

The current Minor FSM assumes that there is only a single staff on the scanned sheet.
Therefore after it receives a beat_done signal from the Beat Finder module it remains in
INACTIVE state without activating the STAFF state once again. By changing the Minor FSM to
run the current process repeatedly according to the number of staffs on a sheet (re-enable the Staff
Finder module), multiple staff recognition is possible.

Identifying the half notes and the quarter notes can be performed by changing the Note
Finder module. After the pixel counts of each space is provided, the threshold values for
determining whether it is F, G, A, B,C, D or an E needs to be adjusted to accommodate the range
of black pixels that are counted for a half note and a quarter note. Furthermore, the Beat Finder
module can be changed to recognize whether it is a half note or a quarter note by changing it
threshold values as well.

Identifying multiple notes is slightly difficult due the quality of the camera. To have
multiple notes on a single staff, the staff lines need to be long. This increases degree of curving of
these lines due to the camera’s circular lens. To overcome this problem the Scan Local module
and the Count Space module needs to be more robust and more flexible as it progresses along the
staff.

27

Audio Generator:
(by Lance Collins)

The Audio Generator is responsible for synthesizing the audio for a given piece of sheet
music. This module is capable of synthesizing sounds for four different instruments with every
note from eight octaves. Various playback options including playing, pausing, and stopping (on
play, restart from the beginning) are supported by the audio generator. These options are selected
in the user interface and signaled to the audio generator which then implements these behaviors.

Audio Timbre Transformer
SynthESizer Instrument Generator

ADSR Harmonic
Scale Scale
Generator Generator

ADSR
Params

Harmonic
Sheet PIayer Params
Instrument Generator

ADSR Harmonic
P Scale Scale
N Ote arams Generator Generator

ADSR

DeteCtion Key Press Hsrmonic
arams
Memory

Instrument Generator

MajOI’ FSM ADSR ADSR Harmonic

Scale Scale et

Scaler
Params Generator Generator

UI Harmonic

Event Player Params

Instrument Generator

ADSR Harmonic
Scale Scale
Generator Generator

Harmonic
Params

Control Tone Tone Theta S
Logic Selector Params Memory Generator

AC97 |

Figure 17: Audio Synthesizer Block Diagram

28

Overview and Background

The Audio Generator functionality can be divided into two discrete areas: playback and
audio synthesis. Playback entails transforming the input to the Audio Generator into key press
events that can be used to synthesize the audio.

Audio Synthesis:

Audio output is synthesized by combining sine waves to form the desired sound. For a
given instrument, a note is composed of many different sinusoids known as harmonics. The
frequency of each harmonic is an integer multiple of what is known as the first harmonic or
fundamental. Each instrument has particular characteristics of their sound known as the timbre.
The timbre is what allows us to distinguish between a violin and a piano. One factor that
constitutes an instrument’s timbre is the relative amplitudes for each harmonic. The timbre for
each instrument is also determined by the variance of the amplitude over time as a particular note
is pressed or released. In general, the variance of the amplitude for an instrument is very complex,
but it is often simplified into a model known as the ADSR (Attack Decay Sustain Release)
envelope which is explained in section 3.1.1.3.

1. ACY97

The AC97 transforms the binary audio data into an audio signal output to the headphone
jack. It generates 48000 ready pulses per second. The ready pulse tells the Audio Synthesizer that
the AC97 is ready to receive new audio data. Given that the Audio Synthesizer runs on a 27Mhz
clock, the Audio Synthesizer has ~562 clock cycles to perform computations. Most of the code for
interfacing with the AC97 was taken from the Lab 4"!. It was modified to use the volume
information from the UI Volume Slider and to take 18-bit values instead of 8-bit values.

2. Sine Wave Generation

The sine wave calculator takes in a 16-bit signed value, THETA, where

2 a8
= THETA—3z radians « THETA =—216
2 2m Formula 2

For a given sine wave of frequency, F,

AG = 2nFAL Formula 3

The AC97 takes in 48,000 samples per second. For sample, s,

29

At = Az
T azooo- Formula 4

Therefore, 6 is now defined as

2nF

Ag = A4S, Formula 5

Using the pre-computed Oinisia and AB values, the input, THETA, of the sine function is
determined (the effect of different 6inisia values did not vary significantly between instruments, so
the same Ouiiat values were used for all instruments. So, if the desired frequency is 261.626 Hz
(Middle C), the A6 can be calculated as follows:

Formula 6
2 261.626 As

TE—
ATHETA = %ziﬁ — 357 x As

3. Amplitude Modulation

Amplitude modulation happens in two places in the Audio Synthesizer.
O Scaling the harmonics to their relative amplitudes
O Application of the ADSR Envelope (amplitude variance over time)

To modulate the amplitude, a utility module called the Scaler is used. The Scaler uses a
“scale factor” to adjust incoming data. In an abstract since, the scale factor is a value between 0
and 1, which can adjust the amplitude at discrete values between its initial amplitude and zero. The
scale factor is a positive 8-bit integer, which has valid values between 0000 0000 (0) and
1000 _0000; (128). For values above 1000 0000 (128), the lower order bits are ignored and the
scale factor is considered to be 1000 0000, (128). The Scaler multiplies by the scale factor, then
divides by 128 (shift right by 7-bits).

For example, a scale factor of 128 means the data remains unchanged, but a scale factor of
64 means the data is divided by 2. The scale factors for the harmonic amplitudes are constant, so
they are retrieved from a lookup. However, the ADSR Envelope varies with time, so the value
must be computed.

The ADSR Envelope is divided into four states: attack, decay, sustain, and release. The
attack begins after the note is struck, and is immediately followed by the decay and sustain. When
the note is released, the release phase begins. During the attack phase, the amplitude increases to
its maximum value. Then, during the decay phase, the amplitude decays to a more moderate level.
It remains in this range during the sustain phase, and eventually zeroes out during the release
phase. The audio synthesizer maintains state information for each note about its position in the
ADSR envelope function and updates this based on the time elapsed and key press signals
received from the playback modules.

30

The ADSR Envelope is divided into samples (256 samples per second). The attack and
decay stages have a certain duration defined in terms of number of samples elapsed. Each stage
has a delta value, which specifies how much the amplitude changes per sample. However, there
are 187 ready pulses per sample so amplitude must change at more discrete values than those
specified by the ADSR parameters. To accomplish this, there are fractional bits attached to the
scale factor used for ADSR modulation. This equivocates to interpolating between samples where
the factor (scale factor + fractional bits) takes on distinct values between samples.

Detailed Description: Audio Generator

Audio Synthesizer

The Audio Synthesizer is the main module which manages all audio generation. It
coordinates a six stage pipeline with multiple working parallel during each stage. It has some
simple control logic which interprets play, pause, and stop signals from the Ul module. When
playing, this module enables the Tone Selector, the beginning of the pipeline, which cascades
enable signals through the pipeline. Ultimately, the final audio data is generated and on the next
ready pulse, it is output to the AC97 and the process begins again. The control logic also selects
between two player modules: the Event Player and the Sheet Player. The enabled player’s key
press data is stored into the key press memory and read later.

Tone Selector

The Tone Selector begins upon receipt of an enable signal. It sends tone indices (octave,
note, and harmonic) through the pipeline on each clock cycle and each successive module
computes based on these values and the outputs of the prior modules. The Tone Selector is
comprised of a cascade of counters which overflow to the next counter when they reach their
maximum value. The counters iterate through the octave, note, and harmonic indices, respectively.
When all indices have been output, the module stops until another enable signal is received.

Sine Wave Generation
1. Tone Parameters

The Tone Parameters module takes the tone index information and outputs the
corresponding initial theta and delta theta values on the next clock cycle. The delta theta for the
fundamental harmonic of the highest octave can be used to calculate the delta theta for all
harmonics of all octaves of that note using simple addition and multiplication.

31

2. Theta Memory

The Theta Memory operates in two stages. First, it retrieves last theta value for the input
tone and increments it by the theta delta output from the Tone Parameters module. Second, this
incremented theta value is output and stored as the new theta value for that tone. The Theta
Memory contains a two-port RAM so that it can operate each stage (retrieving and storing)
concurrently. While the input tone’s theta is retrieved, the incremented theta for the last input tone
is stored and output.

3. Sine Calculator

The Sine Calculator is comprised of 15 BRAMs which store the sine output for 16-bit theta values.
This module was generated using the Coregen tools provided with Xilinx. There is a delay of one
clock cycle between the input of a theta value and the output of corresponding sine value.

Timbre
1. Timbre Transformer

The Timbre Transformer manages all transformations to the sine data coming from the
Sine Calculator, to apply the timbre of the instruments. For each instrument, it has Instrument
Generator, and ADSR Parameters, and Harmonic Parameters modules which the Timbre
Transformer wires together so that they apply the correct modulation to the sine data. Like the
Audio Synthesizer, it is divided into pipeline stage's and where each stage is dependent on the
prior stage’s input. Each stage corresponds to a stage in the audio synthesizer, so it is easy to hook
the inputs from the Audio Generator into specific stages. The output of the Instrument Generators
is added together and output to the Audio Synthesizer.

2. Instrument Generator

The Instrument Generator coordinates the transformation of the outputs of the Sine
Calculator, ADSR parameters, and Harmonic Parameters modules into the correct tone output for
the instrument. This module is designed to be generic so that attaching the correct Harmonic and
ADSR Parameters modules will yield the correct output. This module is organized into a pipeline
that works alongside the pipelines for the Timbre Transformer and Audio Synthesizer so that
signals arrive at the correct timing.

32

3. Harmonic Parameters

A unique version of this module is specified for each instrument. This module is a lookup
table which outputs the relative amplitude of each harmonic as a scale factor (as described in the
Amplitude Modulation section). The module takes the harmonic index as input and outputs on the
next clock cycle. See the appendix for a table of the values corresponding to each instrument.

4. ADSR Parameters

Similar to the Harmonic Parameters module, this module is distinct for every instrument.
In the simplest case, this module outputs constant delta values which indicate the change in the
amplitude per sample for each state (attack, decay, sustain, and release) along with the duration of
the attack and decay states. This means the amplitude changes linearly when in a particular state.
Since the change in amplitude for the violin and cello is nonlinear for the sustain state, the
corresponding ADSR Parameters module reflects this by outputting delta values consistent with
those of a sinusoid.

5. Note State RAM

Inside each Instrument Generator module, the ADSR information of each note must be
stored. This module stores this state information in RAM. The state information consists of:

O ADSR State — Attack, Decay, Sustain, or Release

O ADSR count — the number of samples that have elapsed since the state began. Used to end
a state when its duration is over.

O ADSR Factor — a combined value represented the scale factor and fractional bits which
allow the scale factor to be incremented with higher granularity.

To minimize the latency, reads and writes are performed concurrently using a two port RAM. The
state information is updated by the ADSR module and stored on the next clock cycle while new
state information is retrieved and output.

6. ADSR Scale Generator

The ADSR Scale Generator takes in the ADSR parameters, the current state information of
the note, and the key press status, and updates and stores the next state in the Note State RAM.
This update process can be separated into stages:

1. Determine the next ADSR state based on key press information and current ADSR state
from the Note State RAM.

33

2. Get the delta value for the current ADSR state.
3. Calculate the new factor value for the next state (interpolation).

4. Update sample count (goes to zero if state changes, otherwise it increments)

7. Harmonic Scale Generator

The Harmonic Scale Generator is just a modified Scaler module which is designed to take
two unsigned integer values (the harmonic scale factor and the ADSR scale factor). It outputs an
adjusted scale factor for the harmonic based on the ADSR scale factor.

8. Note Scaler

This is a Scaler module which uses the adjusted scale factor from the Harmonic Scale
Generator to modulate the amplitude of its incoming data from the Sine Generator. This is the
final module before the information is output to the Timbre Transformer.

Playback
1. Key Press Memory

The Key Press Memory stores the key press information for each instrument. Each line in
the RAM stores 4 bits, the key press for each instrument for the note corresponding to that
address. This is done because each Instrument Generator acts concurrently, their key press
information needs to be extracted simultaneously. When an instrument’s key press information is
updated, the key press information for other instruments must remain unchanged. So when it
receives an instruction to write key information, it reads the address, updates the bit corresponding
to the instrument, and stores it back in the RAM. To prevent conflicts, it does not allow reads to
happen concurrently with writes. There is a writable signal that is output to the player modules so
they are only enabled when the Key Press Memory is writable.

2. Sheet Player

The Sheet Player takes the information from the Note RAM in the Note Detection module
and outputs key press events. The next note is pre-fetched from the Note RAM because the latency
introduced by connecting two FPGAs. It plays each note in succession and maintains a state for
each note corresponding to the number of remaining beats that the note should remain playing.
Each beat, it decreases these remaining beats and finally shuts off the note when it has no beats
remaining.

34

State Index Note State
0 NONE
1 QUARTER NOTE
2 HALF NOTE
4 WHOLE NOTE

Table 1: Note States and Corresponding State Index
3. Event Player

The Event Player takes information from a BRAM which is a modified version of the
MIDI format. Each line in the BRAM specifies:

O Key — the note and octave index
O Instrument — the instrument used to play the note

O Tick — there are 8 ticks per second. This value is 11 bits wide so it allows for 2048 ticks or
4 minutes and 16 seconds.

O Key Press (On or Off) — ON =1, OFF =0.

The Event Player maintains a counter with the current tick value. It goes through the BRAM until
it reaches an address where the tick value isn’t equal to the current tick count. It updates the
specified notes with the key press information as it goes through the addresses.

Testing and Debugging: Audio Generator

The majority of testing was done using ModelSim. As new modules were added, their
outputs were confirmed in ModelSim. Given that the Audio Synthesizer is organized into a
pipeline, it was not only important that the modules output the correct values, but also that the
timing for their outputs was consistent with the stages. After the Audio Synthesizer was complete
enough to generate actual audio signals, much of the testing was done by listening to the audio
output in addition to using ModelSim. Since the Audio Synthesizer was highly modularized, it
was very easy to identify which modules were erroneous after making changes or additions.

Tone Selector

To test this module, I verified in ModelSim that each index was output and that increments
happened every clock cycle. I also checked that after the Tone Selector has iterated through all the
tone indices, that it stops its output and restarted on the next enable. This is important because
otherwise it would repeat indices or output unnecessary tones.

35

Tone Parameters

Using ModelSim, the output (the value of initial theta and delta theta) for corresponding
tone index information was verified by checking the values of these buses one clock cycle after
receiving a tone index.

Theta Memory

The internal RAM used in the module was observed to ensure that the memory was
updated properly and that the incremented theta output was correct. Since the delta theta value had
to be delayed to line up with the output of the last theta from the BRAM, this timing was verified.

Sine Calculator

For this module, I checked what sine values were generated for given values of theta.
There was a text file which specified the contents of the BRAM. I looked up the corresponding
theta address and ensured that the sine data matched with the observed value from ModelSim.

Timbre Transformer

The Timbre Transformer was primarily tested by listening to the audio output. The
pipeline portion was tested by checking the cascade of enable signals and tone indices lined up
with values from the Audio Synthesizer.

ADSR Scale Generator

The bulk of the testing of the Instrument Generator was devoted to testing the ADSR Scale
Generator. The interpolation portion was the most complex part of this module. I manually
calculated the expected values and verified the output using ModelSim.

Harmonic Scale Generator and Note Scalar

These modules were comprised of Scaler modules. These modules were tested in isolation
in ModelSim by inputting test data and checking the output against manually calculated desired
values. When the modules were integrated into the Audio Synthesizer, the generated scales were
output to the hex display for a particular tone. While these values changed very quickly, a rough
idea of the scale could be seen.

36

Key Press Memory

The main difficulty with the Key Press Memory was ensuring that it output its writable
signal at the correct time and that code for changing a single bit was correct. Using the Player
modules to input test data, I checked that the lines of the internal RAM were updated correctly
with only the desired bit modified.

Sheet Player

To test this module, I used a simple module with the notes for “Mary Had A Little Lamb”
and viewed its outputs in simulation in addition to listening to the audio output. The RAM address
was output to the hex display to see that it was updated correctly.

Event Player

The Event Player was tested using transformed MIDI data from a midi file for “Rose” from
the movie Titanic. The tick count and the current BRAM address were output to the hex display to
ensure that they were incremented corrected.

Audio Synthesizer

This module was the main module, so function was dependent on its submodules.
However, there were parts that were contained only within this module that required testing. The
main part that was specific to this module was the control logic. I ensured that it only output new
sound data when the play signal was received and that it reset when the stop signal was received.
Also, the proper progression of the enable signals and the tone index information through the
pipeline was verified.

To listen to the audio output, the switches on the FPGA were latched to key press events. By
activating these switches, I was able to hear the output for particular notes. Also, using the Player
modules allowed me to see the Audio Synthesizer under more complex circumstances, where the
input changes rapidly.

37

Further Enhancements: Audio Generator

Some further enhancements would be sound effects such as reverberation and increasing
the accuracy of the sound compared to the sound of the actual instrument. Another potential
enhancement would be to add more instruments, which could be easily done by adding new
instrument generator modules with different attached ADSR Parameters and Harmonic Parameters
modules.

Integration of individual design components

As mentioned in the overview, this design project comprises of three main components:
The image capture, note recognition and audio generation. These three sections were individually
designed, programmed and tested by three engineers. Therefore it was imperative to have an
efficient integration plan when the individual components were brought together to implement the
overall project. The first step of the integration was to combine the image capture and display
features created by Jing Han with the note decoder section create by Dilini
Warnakulasuriyarachchi. Once this was successful the second step was to integrate the audio
generation module created by Lance Collins.

The image capture module and the note recognition module were integrated by first
introducing the mouse pointer module with the note recognition module. Then the next step was to
introduce the code for the display of the volume control slider into the note recognition code. The
third step was to introduce the code for the display of Play, Pause, Stop buttons and the Frequency
Display box into the note recognition code. This step by step method reduced the complexity of
the integration process and made debugging an easy task. The image capture module and the note
recognition module were successfully integrated.

The first attempt of integrating the audio generation code into the image recognition and
note recognition code was not successful. During integration various routing issues arose reducing
the audio quality. Therefore to overcome these problem two labkits were utilized. One labkit
contained the audio generation module and the other labkit contained the image capture and the
note recognition module. The two labkits were connected by wires. To reduce the number of wires
used to connect the labkits, the wires were used as a serial line by using shift registers to send and
receive data. The process is explained in detail below.

From the note recognition module 17 bits of data is sent to the audio generation module:
16 —bits for the note and 1 bit as the enable audio signal. If the shift register method was not used
it would require 17 wires to connect the audio generation with the note recognition module. This
method is not practical since having too many external wires can corrupt the signal due to
interference among the wires. Therefore the shift register principle was used. From the image
capture and the note recognition module 27 bits of information is sent to the audio generation
module. From the audio generation module 5 bits of information is sent to the image capture and
note recognition module.

38

Output from Audio:
{ audio_done [1 bit], beat_delay [1 bit], bram_addr [3 bit]}

Output from the Image capture & Note recognition:

{audio_enable [1 bit], volume [5 bits], play [1 bit], pause [1 bit], stop [1 bit], instrument_select [2
bits], note [16 bits]}

There is a single wire as output from the audio module and another single wire as the
output from the image capture and note recognition module. Another wire was used to send a
common clock signal to receive and send data. Two other wires were used to notify each labkit
that data is ready to be read. In total 5 wires were used to establish the communication between the
two labkits.

As mentioned before, the serial wire transmission was established by using registers. At
the audio generation end, a register is created to hold the 5 bits output data. During each clock
signal one bit of information is sent via the wire. A counter keeps track of the number of bits sent.
Once the counter counts up to 5 from 0 it enables the data ready signal to the receiver. Likewise,
for receiving data, the audio generation modules reads 1 bit of information and stores it in a
register during each clock cycle. Once the data_ready signal is received from the other labkit the
data in the register is read.

This same process is implemented in the other labkit. The only difference is that here the
counter will count up to 27 from 0 since there are 27 bits to send to the audio generation module.

Testing & debugging the overall system

Each individual engineer has his/ her method to test their individual components. However
when all the components are integrated there needs to be a method to ensure that correct
information is passed back and forth between the two labkits. The Analyzer was used to display
the data being sent and received at both ends. An image of this data is shown below under figure
18.

39

clk_ES
A21]
data_2 lance

slate

Lalk_cnt
dala_from_lance
lance_eady
diliri_ready

ecaned_data

final_teceved

Figure 18: Integration signals displayed on the analyzer

As seen in the image above, the analyzer displays the clock signal, the ready signals, one
bit data sent and received, the counter, the register that hold the received data and the register that
holds the final received data. Furthermore, the sent data is also displayed on the hexadecimal
display. Initially a known bit pattern was sent from both ends and then the communication was
established by ensuring the correct pattern was received. Once this was successful the actual data
was sent and each individual module was tested. For instance the play, pause, stop and volume
controller was tested by ensuring the audio responded to the correct control signals. The notes
were tested by listening to them. At the end of the day the integration process was successfully
completed.

Conclusion

The Phantom Sight Reader prototype is a unique system that has the potential to bring a
whole new level of automation to the music playing experience. Its user-friendly interface
provides the user with a degree of insight into the inner workings of the system. The unique note
recognition system has great potential to be scaled, in terms of number of notes, range of notes,
and variations in note duration, such that a broad repertoire of music can be played. Additionally,
while a typical problem of automatically generated music is the mechanical quality of the sound,
the audio generation component of the Phantom Sight Reader has taken a considerable step
towards improving the musicality of automatically generated music by adding additional
dimensions to the tone quality.

40

References

[1] 6.111 Sample Code for Labkit: "NTSC video decoder/digitizer (b&w) example", Fall 2005.

[2] 6.111 Sample Code for Labkit: "ZBT RAM example - displays b&w NTSC video in 1024x768
window", Fall 2005.

[3] 6.111 Sample Code for Labkit: "PS/2 mouse imput", Fall 2005 (modified by Gim Hom, Fall
2008).

[4] 6.111 Sample Code for Labkit: "Video display of character strings", Fall 2005.
[5] 6.111 Lab 4 Verilog code, Fall 2008.

41

Appendix

Verilog Code for Video Display & Note Decoder

Top level module:

‘default_nettype none

//

// File: zbt 6111 sample.v

// Date: 26-Nov-05

// Author: I. Chuang <ichuang@mit.edu>

//

// Sample code for the MIT 6.111 labkit demonstrating use of the ZBT

// memories for video display. Video input from the NTSC digitizer is

// displayed within an XGA 1024x768 window. One ZBT memory (ram0) is used
// as the video frame buffer, with 8 bits used per pixel (black & white).

//

// Since the ZBT is read once for every four pixels, this frees up time for

// data to be stored to the ZBT during other pixel times. The NTSC decoder
// tuns at 27 MHz, whereas the XGA runs at 65 MHz, so we synchronize

// signals between the two (see ntsc2zbt.v) and let the NTSC data be

// stored to ZBT memory whenever it is available, during cycles when

// pixel reads are not being performed.

//

// We use a very simple ZBT interface, which does not involve any clock

// generation or hiding of the pipelining. See zbt 6111.v for more info.

42

/1

// switch[7] selects between display of NTSC video and test bars

// switch[6] is used for testing the NTSC decoder

// switch[1] selects between test bar periods; these are stored to ZBT
// during blanking periods

// switch[0] selects vertical test bars (hardwired; not stored in ZBT)

//"include "display 16hex.v"
//"include "debounce.v"
//"include "video decoder.v"
/I"include "zbt 6111.v"

//"include "ntsc2zbt.v"

I
//

//6.111 FPGA Labkit -- Template Toplevel Module

//

// For Labkit Revision 004

//

//

// Created: October 31, 2004, from revision 003 file

// Author: Nathan Ickes

//
s
//

// CHANGES FOR BOARD REVISION 004

43

//

//' 1) Added signals for logic analyzer pods 2-4.

// 2) Expanded "tv_in_ycrcb" to 20 bits.

// 3) Renamed "tv_out data" to "tv_out i2c data" and "tv_out sclk" to
/" "tv_out i2c clock".

//'4) Reversed disp_data_in and disp_data out signals, so that "out" is an
// output of the FPGA, and "in" is an input.

//

// CHANGES FOR BOARD REVISION 003

//

// 1) Combined flash chip enables into a single signal, flash _ce b.

//

// CHANGES FOR BOARD REVISION 002

//

// 1) Added SRAM clock feedback path input and output

// 2) Renamed "mousedata" to "mouse data"

// 3) Renamed some ZBT memory signals. Parity bits are now incorporated into
// the data bus, and the byte write enables have been combined into the
/I 4-bit ram# bwe b bus.

// 4) Removed the "systemace clock" net, since the SystemACE clock is now
// hardwired on the PCB to the oscillator.

//

T g

//

// Complete change history (including bug fixes)

//

44

// 2005-Sep-09: Added missing default assignments to "ac97 sdata out",

// "disp_data_out", "analyzer[2-3] clock" and
// "analyzer[2-3] data".
//

// 2005-Jan-23: Reduced flash address bus to 24 bits, to match 128Mb devices

// actually populated on the boards. (The boards support up to
// 256Mb devices, with 25 address lines.)
//

// 2004-Oct-31: Adapted to new revision 004 board.
//

// 2004-May-01: Changed "disp data_in" to be an output, and gave it a default

// value. (Previous versions of this file declared this port to
// be an input.)
//

// 2004-Apr-29: Reduced SRAM address busses to 19 bits, to match 18Mb devices

// actually populated on the boards. (The boards support up to
// 72Mb devices, with 21 address lines.)
//

// 2004-Apr-29: Change history started
//
s

module zbt 6111 sample(beep, audio reset b,
ac97 sdata out, ac97 sdata in, ac97 synch,

ac97 bit clock,

45

vga out red, vga out green, vga out blue, vga out sync b,
vga out blank b, vga out pixel clock, vga out hsync,

vga out vsync,

tv_out ycrcb, tv_out reset b, tv_out clock, tv_out i2c clock,
tv_out_i2c_data, tv_out pal ntsc, tv_out hsync b,
tv_out_vsync b, tv_out blank b, tv_out subcar reset,
tv_in_ycrchb, tv_in data valid, tv_in line clockl,
tv_in line clock2, tv_in aef, tv_in_ hff, tv_in_aff]

tv_in_i2c clock, tv_in i2c data, tv_in fifo read,

tv_in_fifo clock, tv_in_iso, tv_in_reset b, tv_in_clock,

ram0_data, ram0_address, ram0 adv ld, ram0O clk, ram0 _cen_b,

ram0 _ce b, ram0 oe b, ram0 we b, ram0 bwe b,

raml data, ram1 address, raml_adv ld, raml clk, raml cen b,

raml _ce b,raml oe b,raml we b, raml bwe b,

clock feedback out, clock feedback in,

flash data, flash address, flash_ce b, flash oe b, flash_ we b,

flash reset b, flash sts, flash byte b,

rs232 txd, rs232 rxd, rs232 rts, rs232 _cts,

46

mouse_clock, mouse_data, keyboard clock, keyboard data,

clock 27mhz, clockl, clock?2,

disp_blank, disp data out, disp clock, disp rs, disp_ce b,

disp_reset b, disp data in,

button0, button1, button2, button3, button_enter, button_right,

button_left, button down, button_up,

switch,

led,

userl, user2, user3, user4,

daughtercard,

systemace_data, systemace address, systemace ce b,

systemace we b, systemace oe b, systemace irq, systemace mpbrdy,

analyzerl data, analyzerl clock,
analyzer2 data, analyzer2 clock,
analyzer3 data, analyzer3 clock,

analyzer4 data, analyzer4 clock,

47

play signal, pause_ signal, stop signal,

instrument_select,

beat delay,

volume);

output beep, audio reset b, ac97 synch, ac97 sdata out;

input ac97 bit clock, ac97 sdata in;

output [7:0] vga_out red, vga out green, vga out blue;
output vga out sync b, vga out blank b, vga out pixel clock,

vga out hsync, vga out vsync;

output [9:0] tv_out_ycrcb;
output tv_out reset b, tv_out clock, tv_out i2c clock, tv_out i2c data,
tv_out_pal ntsc, tv_out hsync b, tv_out vsync b, tv_out blank b,

tv_out subcar reset;

input [19:0] tv_in_ycrcb;

input tv_in data valid, tv_in line clockl, tv_in_line clock2, tv_in aef,
tv_in_hff, tv_in_aff;

output tv_in i2c clock, tv_in fifo read, tv_in fifo clock, tv_in_iso,
tv_in reset b, tv_in_clock;

inout tv_in_i2c_ data;

48

inout [35:0] ramQ_data;
output [18:0] ram0_address;
output ram0_adv_1d, ram0O _clk, ram0 cen b, ram0O ce b, ram0 oe b, ram0 we b;

output [3:0] ram0 bwe b;

inout [35:0] raml_data;
output [18:0] ram1_address;
output ram1_adv ld, ram1 clk, ram1l cen b, raml ce b, raml oe b, raml we b;

output [3:0] ram1_bwe b;

input clock feedback in;

output clock feedback out;

inout [15:0] flash data;

output [23:0] flash address;

output flash _ce b, flash oe b, flash we b, flash reset b, flash byte b;

input flash_sts;

output rs232 txd, rs232 rts;

input rs232 rxd, rs232_cts;

inout mouse_clock, mouse data, keyboard clock, keyboard data;

input clock 27mhz, clockl, clock2;

49

output disp_blank, disp clock, disp_rs, disp_ce b, disp reset b;
input disp data in;

output disp data out;

input button0, buttonl, button2, button3, button_enter, button_right,
button_left, button down, button_up;
input [7:0] switch;

output [7:0] led;

inout [31:0] /*userl, user2,*/ user3, user4;
input [31:0] userl;
output [31:0] user2;

inout [43:0] daughtercard;

inout [15:0] systemace data;

output [6:0] systemace address;

output systemace ce b, systemace we b, systemace oe_b;

input systemace irq, systemace mpbrdy;

output [15:0] analyzerl data, analyzer2 data, analyzer3 data,
analyzer4 data;

output analyzerl clock, analyzer2 clock, analyzer3 clock, analyzer4 clock;

output reg play_signal, pause signal, stop_signal;

50

output reg [1:0] instrument_select;

input beat_delay;

output reg [4:0] volume;

T
//

// /O Assignments

/
I

// Audio Input and Output
assign beep= 1'b0;
assign audio _reset b = 1'b0;
assign ac97 synch = 1'b0;
assign ac97 sdata out = 1'b0;
/*
*/

// ac97 sdata_in is an input

//' Video Output

assign tv_out_ycrcb = 10'h0;
assign tv_out reset b = 1'b0;
assign tv_out_clock = 1'b0;

assign tv_out_i2c_clock = 1'b0;

51

assign tv_out_i2c_data = 1'b0;
assign tv_out_pal ntsc = 1'b0;
assign tv_out_hsync b =1'bl;
assign tv_out_vsync b= 1'bl;
assign tv_out blank b=1D1;

assign tv_out_subcar_reset = 1'b0;

// Video Input

//assign tv_in i2¢ clock = 1'b0;

assign tv_in_fifo read = 1'bl;

assign tv_in_fifo clock = 1'b0;

assign tv_in_iso = 1'bl;

//assign tv_in reset b = 1'b0;

assign tv_in_clock = clock 27mhz;//1'b0;

//assign tv_in i2c¢ data = 1'bZ;

//tv_in_ycrcb, tv_in_data valid, tv_in line clockl, tv_in_ line clock2,

//tv_in_aef, tv_in hff, and tv_in aff are inputs

// SRAMSs

/* change lines below to enable ZBT RAM bank0 */

/*

assign ram0_data = 36'hZ;

assign ram0_address = 19'h0;

assign ram0_clk = 1'b0;

52

assign ram0_we b =1'bl;
assign ram0_cen_b = 1'b0; // clock enable

*/

/* enable RAM pins */

assign ram0_ce b = 1'b0;
assign ram0_oe b = 1'b0;
assign ram0_adv_1d = 1'b0;

assign ram0_bwe b =4'h0;

[k kK

assign ram1_data = 36'hZ;
assign ram1_address = 19'h0;
assign raml_adv_1d = 1'b0;
assign ram1_clk = 1'b0;
assignraml_cen_b =1'b1;
assign raml ce b=1'bl;
assign raml oe b=1'bl;
assignraml _we b =1'bl;

assign raml_bwe b = 4'hF;

assign clock feedback out =1'b0;

// clock_feedback in is an input

53

// Flash ROM

assign flash data = 16'hZ;
assign flash address = 24'h0;
assign flash ce b=1Dl;
assign flash oe b =1'bl;
assign flash we b =1'bl;
assign flash reset b = 1'b0;
assign flash byte b =1'bl;

// flash_sts is an input

// RS-232 Interface
assign rs232 txd = 1'bl;
assign rs232 rts = 1'b1;

// ts232 1xd and rs232_cts are inputs

// PS/2 Ports

// mouse_clock, mouse data, keyboard clock, and keyboard data are inputs

// LED Displays

/*
assign disp _blank = 1'b1;
assign disp _clock = 1'b0;
assign disp rs = 1'b0;
assign disp_ce b =1D1;
assign disp_reset b = 1'b0;

assign disp_data out = 1'b0;

54

*/

// disp_data_in is an input

// Buttons, Switches, and Individual LEDs
//1ab3 assign led = 8'hFF;
// button0, button1, button2, button3, button_enter, button_right,

// button_left, button_down, button_up, and switches are inputs

// User 1/0Os
/I assign userl = 32'hZ;
// assign user2 = 32'hZ;
assign user3 = 32'hZ;

assign user4 = 32'hZ;

// Daughtercard Connectors

assign daughtercard = 44'hZ;

/I SystemACE Microprocessor Port
assign systemace data = 16'hZ;
assign systemace address = 7'h0;
assign systemace ce b= 1'bl;
assign systemace we b = 1'bl;
assign systemace oe b =1Dl;

// systemace_irq and systemace mpbrdy are inputs

// Logic Analyzer

55

//assign analyzerl data = 16'h0;
assign analyzerl clock =1'b1;
assign analyzer2 data = 16'h0;
assign analyzer2 clock =1'b1;
// assign analyzer3 data = 16'h0;
// assign analyzer3 clock = 1'b1;
assign analyzer4 data = 16'h0;

assign analyzer4 clock = 1'b1;

e

// Demonstration of ZBT RAM as video memory

// use FPGA's digital clock manager to produce a

// 65MHz clock (actually 64.8MHz)

wire clock 65mhz_unbuf,clock 65mhz;

DCM vclk1(.CLKIN(clock 27mhz),.CLKFX(clock 65mhz unbuf));
// synthesis attribute CLKFX DIVIDE of vclkl is 10

// synthesis attribute CLKFX MULTIPLY of vclk1 is 24

// synthesis attribute CLK_FEEDBACK of vclkl is NONE

// synthesis attribute CLKIN PERIOD of vclk1 is 37

BUFG vclk2(.O(clock 65mhz),.I(clock 65mhz_unbuf));

wire clk = clock 65mhz;

// power-on reset generation

56

wire power_on_reset; // remain high for first 16 clocks
SRL16 reset_sr (.D(1'b0), .CLK(clk), .Q(power on_reset),

.A0(1'b1), .A1(1'b1), .A2(1'b1), .A3(1'b1));
defparam reset sr.INIT = 16'hFFFF;

// ENTER button is user reset
wire reset,user_reset;
debounce dbl(power on reset, clk, ~button_enter, user_reset);

assign reset = user_reset | power_on_reset;

/I generate basic XVGA video signals
wire [10:0] hcount;

wire [9:0] vcount;

wire hsync,vsync,blank;

xvga xvgal(clk,hcount,vcount,hsync,vsync,blank);

// wire up to ZBT ram

wire [35:0] vram_write data;
wire [35:0] vram_read data;
wire [18:0] vram_addr;

wire vram_we;

zbt 6111 zbtl(clk, 1'b1, vram_we, vram_addr,
vram_write data, vram read data,

ram0 _clk, ram0 we b, ram(_address, ram0 data, ram0 cen_b);

57

// generate pixel value from reading ZBT memory
wire [7:0] vr_pixel;

wire [18:0] vram_addrl;

vram_display vdl(reset,clk,hcount,vcount,vr pixel,

vram_addrl,vram_read data);

// ADV7185 NTSC decoder interface code

// adv7185 initialization module

adv7185init adv7185(.reset(reset), .clock 27mhz(clock 27mhz),
.source(1'b0), .tv_in_reset b(tv_in reset b),
tv_in_i2c¢_clock(tv_in_i2c_clock),

tv_in_i2c¢ data(tv_in i2c data));

wire [29:0] ycrcb; // video data (luminance, chrominance)
wire [2:0] fvh; // sync for field, vertical, horizontal

wire dv; // data valid

ntsc_decode decode (.clk(tv_in_line clockl), .reset(reset),

.tv_in_ycreb(tv_in_yercb[19:10]),

.ycrcb(ycrcb), f(fvh[2]),

V(fvh[1]), .h(fvh[0]), .data_valid(dv));

//debouncing button_up and button_down////////////1/1111111111111]]]

58

wire graycount up button, graycount down_button;
debounce db2(power on_reset, clk, ~button _up, graycount up button);

debounce db3(power on_reset, clk, ~button_down, graycount down_button);

/I code to write NTSC data to video memory

wire [18:0] ntsc_addr;
wire [35:0] ntsc_data;
wire ntsc_we;
wire [7:0] gray count;
ntsc_to_zbt n2z (clk, tv_in_line clockl, fvh, dv, ycrcb[29:22],
ntsc_addr, ntsc_data, ntsc_we, switch[6], graycount up button,

graycount_down_button, gray count, reset, switch[5]);

/I code to write pattern to ZBT memory
reg [31:0] count;

always @(posedge clk) count <=reset ? 0 : count + 1;

wire [18:0] vram_addr2 = count[0+18:0];

wire [35:0] vpat = (switch[1] ? {4{count[3+3:3],4'b0}}

: {4{count[3+4:4],4'b0} });

// mux selecting read/write to memory based on which write-enable is chosen

59

wire sw_ntsc = ~switch[7];

wire ~ my we =sw_ntsc ? (hcount[1:0]==2'd2) : blank;

wire [18:0] write addr = sw_ntsc ? ntsc_addr : vram_addr2;

wire [35:0] write data =sw_ntsc ? ntsc_data : vpat;

// wire write _enable = sw_ntsc ? (my_we & ntsc_we) : my_we;

// assign vram_addr = write enable ? write addr : vram_addrl;

// assign vram_we = write enable;

assign vram_addr =my we ? write_addr : vram_addrl;

assign vram_we =my_ Wwe;

assign vram_write data = write_data;

1HTTDILINT's CODE /11171111

// display module for debugging

// hcount declarations:

wire [10:0] start_hcnt, s _hcnt,e_hcnt,hent;

wire [10:0] marker;

//vcount declarations:

60

wire [9:0] start_vent, end vent, second vent,third vent,fourth vent,v_cnt;

wire [9:0] ventl _one, vent2 one,ventl two, vent2 two, ventl three,
vent2 three,ventl four, vent2 four;

wire [9:0] ventl_five, vent2_ five, vent;

// bram address declarations

wire [18:0] bram_addr ,bram_addrl, bram addr2, bram_addr3, bram_addr4,
bram_addr5;

wire [18:0] addr1, addr2, addr3, addr4, addr5;

// black pixel counts:

wire [14:0] pixel cntl, pixel cnt2, pixel cnt3, pixel cnt4;

//note declaration:

wire [15:0]notel,note2;

// total pixel cnt:

wire [31:0] notel cnt, note2_cnt;

//enable siganls:

wire enable local scan, enable cnt, staff enable, beat enable, note enable,
enable mfsm;

wire note_bram_enable, enable audio;

//Done signals:

wire staff done, cnt_done, note done, local scan_done, beat done, done mfsm,
note_bram_done;

61

//xvga pixel declaration:

wire [7:0] br_pixel, st pixel, mux_pixel;

//switches:
wire sw4, S w3,sw2;

wire [1:0]sw_test;

//hex_display:
wire [63:0] debug_data;

//bram declarations:

wire bram_mem _in,
bram_mem_out,bram mem outl,bram mem_out2,bram_mem out3, bram_ mem_out5;

wire bram_we;
wire wea, clka, clkb;
wire [15:0] dina, douta,doutb;

wire [2:0] addral, addra, addra2, addrb;

//beat declaration:

wire [15:0] beatl, beat2;

wire [2:0] line, local line2;

//labkit_connection

62

reg [4:0] received data, final received data;
wire data_in;

wire [26:0] send_data;

//debounce switches
debounce switch4(reset, clk, switch[4], sw4);
debounce switch3(reset, clk, switch[3], sw3);

debounce switch2(reset, clk, switch[2], sw2);

assign sw_test = {sw4,sw3};

// assign staff enable = sw2;

// assign enable local scan = (sw_test == 3) ? 1'b1: 1'b0;
// assign enable cnt =local scan_done ? 1'bl : 1'b0;

// assign note_enable = (sw_test == 3)? 1'b1: 1'b0

// assign beat_enable = note done ? 1'b1 : 1'b0;

assign enable mfsm =sw2 ? 1'b1: 1'b0;

assign note_bram_enable = (done_mfsm && !note_bram_done) ? 1'b1: 1'b0;
assign wea = (done_mfsm && !note_bram_done) ? 1'b1: 1'b0;

assign addra = wea ? addral : addra2;

assign addra2 = 3'b1; // address of the note2 value

// debug datal = { staff done, line, third vcnt,second vcnt, start_vent, start_hcnt}

63

wire [63:0] debug_datal = {3'b0,
staff done,1'b0,line,8'D0,2'b0,third vcnt,2'b0,second vent,

2'b0,start_vent,1'b0
,start_hcnt};

// debug_data2 = {pixel cnt4, pixel cnt3, pixel cnt2, pixel cntl }

wire [63:0] debug_data2 = {1'b0, pixel cnt4, 1'b0, pixel cnt3, 1'b0, pixel cnt2,
1'b0, pixel cntl};

/////] debug_data3 = {cnt_done,enable cnt, enable local scan, local scan_done, local line2

//

wire [63:0] debug_data3 = {2'b0, ventl_five,1'b0 ,local line2,1'b0,pixel cnt3, 1'b0,
pixel cnt2,

1'b0, pixel cntl};

// debug_data4 = { notel cnt, note2, notel}

wire [63:0] debug_data4 = {3'b0,beat_done, 3'b0, beat_enable,3'b0, note done, 3'b0,
note_enable,

beatl, note2, notel };

//// debug_data5 = {note2, notel, beat2, beatl}

wire [63:0] debug_data5 = {note2, notel, beat2, douta};

/// debug_datab

04

wire [63:0] debug_data6 = {28'b0,1'b0 , send data, 3'b0, final received data};

//l debug_data7

wire [63:0] debug_data7 = {3'b0, staff done, 1'b0, line, note2, notel,

2'b0,start_vent,1'b0
,start_hcnt};

assign debug_data = (sw_test == 1) ? debug_data6 : debug_data7;

display 16hex hexdispl(reset, clk, debug data, //"dispdata" replaced with
"debug data"

disp_blank, disp clock, disp rs, disp_ce b,

disp_reset b, disp_data out);

// Instantiate the bram

bram1
brammem1(.addr(bram_addr),.clk(clock 65mhz),.din(bram_mem in),.dout(bram_mem_out),.we(
bram_we));

bram?2
brammem?2(.addra(addra),.addrb(addrb),.clka(clock 65mhz),.clkb(clock 27mhz),.dina(dina),.dout
a(douta),

.doutb(doutb),. wea(wea));

65

// Instantiate the filter

zbt_to bram #(170)
zbtbram1(.clk(clock 65mhz),.reset(reset),.vr_pixel(vr_pixel),.bram_mem_in(bram_mem _in));

// Instantiate bram_display

bram_display #(44,64,713)
br_displayl(.reset(reset),.clk(clock 65mhz),.hcount(hcount),

.vcount(vcount),.br_pixel(br_pixel),.bram_addrl(bra
m_addrl),.bram_mem outl(bram_mem_out));

//Instantiate the minor fsm

minor_fsm
sfsm(.clk(clock 65mhz),.reset(reset),.enable mfsm(enable mfsm),.staff done(staff done),

.note_done(note_done),.beat _done(beat done),.done
mfsm(done mfsm),.staff enable(staff enable),

.note_enable(note enable),.beat _enable(beat enable)

//instantiate the staff display

staff display #(44,64,713,500)st_display1(.reset(reset),
.clk(clock_65mhz),.staff done(staff done),.hcount(hcount),

.vcount(vcount),.start hcnt(start_hcnt),.end hent(star
t hent),.start_vent(start_vent),

.end_vent(end vent),.st pixel(st_pixel),.bram_addr2(
bram_addr2),.bram_mem_out2(bram_mem_out));

66

// Instantiating the staff finder module

staff finder #(44,64,713,500) st_finder1(.reset(reset),
.clk(clock_65mhz),.staff enable(staff enable),

.bram_mem_out3(bram_mem_out),.bram_addr3(bram_addr3
),.staff done(staff done),

.start_hcnt(start_hent), .start_vent(start_vent),
.second_vent(second vent),.third vent(third vent),

fourth_vent(fourth vent),.end vent(end vent),.line(line));

// assign mux_pixel = (sw_test ==0) ? vr_pixel : ((sw_test == 1) ? br_pixel : ((sw_test ==
2)? st pixel : vr_pixel));

// Instantiate the count _space module

count space?2 #(44,64,713,500) cnt_spacel
(.clk(clock _65mhz),.reset(reset),.s hcnt(s_hcent),.e_hent(e _hent),

.ventl two(ventl two),.ventl three(ventl three),.ve
ntl four(ventl four),

.ventl five(ventl five),.vent2 one(vent2_ one),.vent
2_two(vent2 two),

.vent2 three(vent2 three),.vent2 four(vent2 four),.b
ram_mem_out4(bram_mem_out),

.enable cnt(enable cnt),.pixel cntl(pixel cntl),.pixe
1 cnt2(pixel cnt2),

.pixel cnt3(pixel cnt3),.pixel cnt4(pixel cnt4),.bram
_addr4(bram_addr4),.cnt_done(cnt_done),

67

.hent(hent),.vent(vent));

// Instantiating note _finder

note finder #(2,35)
nf 1(.clk(clock 65mhz),.reset(reset),.note_enable(note enable),.start hcnt(start hent),

Jocal_scan_done(local _scan done),.cnt_done(cnt_done),.pixel cntl(pixel cntl),

.pixel cnt2(pixel cnt2),.pixel cnt3(pixel cnt3),.pixel cnt4(pixel cnt4),.note done(note done),

.marker(marker),.s hcnt(s_hcnt),.e hcnt(e hent),.enable cnt(enable cnt),

.enable local scan(enable local scan),.notel(notel),.note2(note2),.notel cnt(notel cnt),

.note2_cnt(note2_cnt));

// instantiate local scan

scan_local #(44,64,713,500) Iscanl
(.clk(clock 65mhz),.reset(reset),.s hcnt(s hcent),.e hent(e hent),

.start_vent(start_vcent),.
end vent(end vent),.bram_mem_out5(bram _mem_out),

.enable local scan(enable local scan),.bram addr5(bram a
ddr5),.ventl _one(ventl one),

.ventl two(ventl two),.ventl three(ventl three),.ventl fou
r(ventl four),.ventl five(ventl five),

.vent2_one(vent2_one),.vent2 two(vent2 two),.vent2 three(
vent2_three),.vent2 four(vent2 four),

.vent2 five(vent2 five),.local scan done(local scan_done),.
local_line2(local_line2));

68

// Instantiate the bram_decision

bram_decision br_d1(.clk(clock 27mhz),
reset(reset),.addrl(bram_addrl),.addr2(bram_addr2),

.addr3(bram_addr3),.addr4(bram_addr4),.addr5(bram_addr5),.sw_test(sw_test),

.staff enable(staff enable),.staff done(staff done),.cnt done(cnt done),

.enable cnt(enable cnt),.enable local scan(enable local scan),

Jocal scan done(local scan done),.bram addr(bram_addr),.bram we(bram_we));

// Instantiate the beat finder module

beat_finder #(200,250,300) bf 1(.clk(clock 65mhz),
.reset(reset),.beat_enable(beat_enable),.notel cnt(notel cnt),

.note2_cnt(note2_cnt),.beatl(beatl),.beat2(beat2),.be
at_done(beat done));

//Instantiate the final bram where data is stored for lance

note_bram #(2) nb1(.clk(clock 65mhz), .reset(reset), .notel(notel),
.note2(note2),.beatl(beatl), .beat2(beat2),

.note_bram_enable(note_bram_enable),.addra
1(addral),.dina(dina),.note_bram_done(note bram_done));

1 IEND Of DILINI'S CODE ////17111111111111

69

1111117177777777711 1 Lab kit integration///////////11111111111111

reg [5:0] count_clk;

wire clk pulse;

reg clock 1mhz;

/// This module will handle the connection of two labkits

always @(posedge clock 65mhz) begin

if (reset || (count_clk[5:0] == 6'h20))

count_clk <= 6'b0;

else count clk<=count clk + 1 ;

end

assign clk pulse = (count_clk[5:0] == 6'h20); // counting up to a 2.somthing Mhz

always @(posedge clock 65mhz) begin

if (clk_pulse) clock 1mhz <= ~clock 1mbhz; // generating a 1Mhz square
wave from a 2Mhz pulse

70

end

/I //

//Dilini -> Lance @ dilini's end

reg data_to lance, lance ready;
reg data_out;
reg [4:0] talk cnt;

wire dilini_ready;

always @(posedge clock 1mhz) begin

if (reset) begin

talk cnt <=5'b0;
data_to lance <= 1'b0;
lance ready <=1'b0;

end

else if (talk_cnt !=5'd27) begin

data_out <=send data[talk cnt];
talk cnt <=talk cnt + 1;
lance ready <=1'b0;

end

71

else begin
lance ready <=1'bl;
talk_cnt <=5b0;
end

end

// Lance -> Dilini @ Dilini's end

always @(negedge clock 1mhz) begin

if (reset)

received data <=5b0;

else if (!dilini_ready)

received data <= {data_in, received data[4:1]};

else if (dilini_ready) final received data <= received data;

end

// user assignments

assign {dilini_ready, data_in} = user1[1:0];

assign user2 = {29'hZ,clock 1mhz, lance ready, data out};

assign enable audio = done_mfsm ? 1'b1: 1'b0;

assign addrb = final received data[2:0];

72

assign send_data = {volume, enable audio, instrument select, play signal, pause_ signal,
stop_signal, doutb};

reg [2:0] state;

//'// Logic Analyzer
assign analyzerl data = {8'b0, state, talk cnt};
//assign analyzerl clock = clock 65mhz;

assign analyzer3 data = {final received data,
received data,dilini ready,lance ready,data in, data_out,

clock 1mhz,clock 65mhz};

assign analyzer3 clock = clock 65mhz;

1 START JING'S CODE //1111717171771777711TT

T
//

// fixed box for orientation

//
T T

// box shown on the display for determining where to place the staff in front of the

camera.
reg box;
always @ (posedge clk)
box <= ((hcount == 64 && vcount < 590) | hcount == 737 | vcount == 200 | vcount ==
544);

I

73

//

// frequency display box

//
T T

// box that displays which frequency is being played. Uses an LUT.
wire [6:0] X AXIS PIXEL START = 60;

wire [9:0] Y_AXIS TOP = 620;

wire [9:0] Y _AXIS BOTTOM = 720;

wire frequency box = (hcount >= 44 & hcount <= 414 & vcount >= 600 & vcount <=
760); // region for box

wire [9:0] frequency; //frequencies to be displayed

reg frequency bar, axes;

s

/1

// LUT for notes/frequencies
/1

reg [15:0] note;

always @ (posedge clock 65mhz)
begin
if (addrb == 3'd1) note <= notel;
else if (addrb == 3'd2) note <= note2;

74

end

parameter F = 350;
parameter G = 392;
parameter A = 440;
parameter B = 494;
parameter C = 524;
parameter D = 587;

parameter E = 659;

assign frequency = reset ? 330 :

((note[1:0]==3)? F:

((note[3:2] ==3)? G:

((note[5:4] ==3)? A :

((note[7:6] ==3)? B :

((note[9:8] ==3)? C:
((note[11:10]==3)? D :
((note[13:12] == 3) ? E : 330)))))));

T
//

/l pipeline the frequency bar and x-axis displays

/1

always @(posedge clock 65mhz)
begin

75

frequency bar <= ((hcount == (frequency+X AXIS PIXEL START-330)) &&
(vecount >=Y AXIS TOP && vcount <=Y AXIS BOTTOM));

axes <= (hcount >= 64 && hcount <= 390 && vcount == 720);

end

// x-axis of frequency box ranges from 330hz to 660hz (F through E on the treble clef)
wire [63:0] cstring4 = "FREQ(HZ)";

wire [63:0] cstring5 = "330"; /Nlow E

wire [63:0] cstringb = "660"; //high E

wire [2:0] cdpixel4;

wire [2:0] cdpixel5;

wire [2:0] cdpixel6;

// string displays for frequency box
char_string_display3 cd4(clock _65mhz,hcount,vcount, //FREQ(HZ)
cdpixel4,cstring4,11'd80,11'd730);
char_string display4 cd5(clock 65mhzhcount,vcount, //330
cdpixel5,cstring5,11'd60,11'd721);
char string display4 cd6(clock 65mhz,hcount,vcount, //660
cdpixel6,cstring6,11'd340,11'd721);

s
//
// underline notes as they are played

//

76

T T

// get start_hcnt and end vent from Dilini. start_hcent is where Dilini starts evaluating
the staff.

reg [10:0] x_coordinate; // x-coordinate of underline

wire [10:0] y_coordinate = end vcnt+10; // y-coordinate of underline for single line of
staff;

// change if multiple lines are read

wire [10:0] underline_width = marker; // "marker" is Dilini's word for width of region
that's evaluated.

//For Jing, this is width of underline.

reg underline;

//pipeline underline display

always @ (posedge clock 65mhz)

begin

underline <= (hcount >= x_coordinate && hcount <= x_coordinate + underline_width

&& vcount >=y coordinate && vcount <=y coordinate + 3);

if (reset) x_coordinate <= start_hcnt;

// since the note from addrb[0] is played while note from addrb[1] is fetched, and only
two notes

// are being played, move x_coordinate as follows.

else if ((addrb == 3'd1) || (addrb == 3'd2)) x_coordinate <= start_hcnt + (addrb - 1'd1) *
marker;

end

77

T i i

//

// mouse

//

s
wire [11:0] mx, my;

wire [2:0] btn_click;

ps2 _mouse xy ml(clk, reset, mouse clock, mouse data, mx, my, btn_click);

reg [7:0] pixel;

wire b,hs,vs;

// little box to display the mouse
wire [3:0] WIDTH = 10;
wire [3:0] HEIGHT = 10;
wire cursor_box = ((hcount >= mx[9:0] && hcount < (mx[9:0]+WIDTH)) &&
(vcount >= my[9:0] && vcount < (my[9:0]+HEIGHT)));

delayN dnl(clk,hsync,hs); // delay by 3 cycles to sync with ZBT read
delayN dn2(clk,vsync,vs);

delayN dn3(clk,blank,b);

// select output pixel data; mux_pixel is in charge of the camera display and the mouse.

78

assign mux_pixel = (sw_test == 0) ? (cursor_box ? 8'hFF : vr_pixel) : ((sw_test==1) ?
br_pixel :

((sw_test == 2)? st_pixel : (cursor _box ?
8'hFF : vr_pixel)));

always @(posedge clk)
begin
pixel <= switch[0] ? {hcount[8:6],5'b0} : mux_pixel;

end

L
//

// play/pause/stop buttons

//
e

// the x and y coordinates of the top left corner of the buttons
wire [9:0] play_button_x = 500;

wire [9:0] play_button_y = 600;

wire [9:0] pause_button_x = 500;

wire [9:0] pause_button_y = 640;

wire [9:0] stop_button_x = 500;

wire [9:0] stop_button_y = 680;

//play_button, pause button and stop button are the regions in which the buttons are
displayed.

reg play button;

79

reg pause_button;

reg stop_button;

//play button_area, etc. are the regions where, when the mouse clicks, the
corresponding functionality is enabled.

reg play button_area;
reg pause_button_area;

reg stop_button_area;

parameter [2:0] STOP=0;
parameter [2:0] PLAY=1;
parameter [2:0] PAUSE=2;

// pipelining the button regions and button displays.
always @ (posedge clk)
begin
play button <= (hcount >= play button_x && hcount <= play button x + 64 &&

vcount >= play button_y && vcount <=
play button y + 24);

pause_button <= (hcount >= pause button x && hcount <= pause button x + 80
&&

vcount >= pause button y && vcount <=
pause_button_y + 24);

stop_button <= (hcount >= stop button x && hcount <= stop _button x + 64 &&

vcount >= stop button y && vcount <=
stop_button_y + 24);

80

play button area <= (mx >= play button x && mx <= play button x + 64 &&

my >= play_button_y && my <=
play button_y + 24);

pause_button_area <= (mx >= pause button x && mx <= pause button x + 80
&&

my >= pause_button_y && my <=
pause button_y + 24);

stop_button area <= (mx >= stop_button x && mx <= stop button x + 64 &&

my >= stop_button_y && my <=
stop_button_y + 24);

//output stop, play and pause signals from FSM to Lance. Stop is default state, enabled when reset
is enabled.

if (reset)
begin
state <= STOP;
play signal <=0;
pause_signal <= 0;
stop_signal <= 1;
end
else begin
case (state)
STOP: begin
play signal <= 0;

pause_signal <= 0;

81

stop_signal <= 1;

if (btn_click == 3'b100 &&
play button area) state <= PLAY;

end
PLAY: begin
play signal <=1;
pause_signal <= 0);
stop_signal <= 0;
if (btn_click == 3'b100 &&
pause button_area) state <= PAUSE;
else if (btn_click == 3'b100 &&
stop_button_area) state <= STOP;
end

PAUSE: begin
play signal <=0;
pause_signal <= 1;
stop_signal <= 0;

if (btn_click == 3'b100 &&
play button area) state <= PLAY;

else if (btn_click == 3'b100 &&
stop_button_area) state <= STOP;

end
endcase
end

end

82

// character display: PLAY/PAUSE/STOP buttons.
wire [63:0] cstring = "PLAY";
wire [63:0] cstring2 = "PAUSE";
wire [63:0] cstring3 = "STOP";
wire [2:0] cdpixel;
wire [2:0] cdpixel2;
wire [2:0] cdpixel3;

char string display cd(clock 65mhz,hcount,vcount, //module char_string_display can
display 4-letter strings

cdpixel,cstring,11'd500,11'd600);

char_string display2 cd2(clock 65mhz,hcount,vcount, / module char_string display2
can display 5-letter strings

cdpixel2,cstring2,11'd500,11'd640);
char_ string display cd3(clock 65mhz,hcount,vcount,

cdpixel3,cstring3,11'd500,11'd680);

T T
//

// instrument select

//
T T

wire [9:0] piano_button_x = 600;
wire [9:0] piano_button_y = 600;
wire [9:0] violin_button x = 600;
wire [9:0] violin_button y = 640;

wire [9:0] cello_button_x = 600;

83

wire [9:0] cello_button_y = 680;
wire [9:0] flute_button_x = 600;

wire [9:0] flute_button_y = 720;

// regions in which buttons are displayed.
reg piano_button;
reg violin_button;
reg cello_button;

reg flute button;

// regions that do things when mouse clicks that button.
reg piano_button_area;
reg violin_button_area;
reg cello_button_area;

reg flute button_area;

// reg piano_signal, violin_signal, cello signal, flute signal; //output for Lance
always @ (posedge clock 65mhz)
begin

piano_button <= (hcount >= piano_button_x && hcount <= piano_button_x + 80
&& //displays

vcount >= play button_y && vcount <=
play button y + 24);

violin_button <= (hcount >= violin button x && hcount <= violin button_x + 96
&&

vcount >= violin_button_y && vcount <=
violin_button_y + 24);

84

cello_button <= (hcount >= cello_button x && hcount <= cello_button x + 80 &&

vcount >= cello_button y && vcount <=
cello_button_y + 24);

flute_button <= (hcount >= flute button x && hcount <= flute button x + 80 &&

vcount >= flute button y &é& vcount <=
flute_button y + 24);

piano_button area <= (mx >= piano_button_x && mx <= piano_button_x + 80
&& /Iplaces for mouse clicking

my >= piano_button y && my <=
piano_button y + 24);

violin_button area <= (mx >= violin_button x && mx <= violin_button_x + 96
&&

my >= violin_button y && my <=
violin_button_y + 24);

cello_button_area <= (mx >= cello_button x && mx <= cello_button x + 80 &&

my >= cello_button y && my <=
cello_button_y + 24);

flute_button area <= (mx >= flute button x && mx <= flute button x + 80 &&

my >= flute button y && my <=
flute button_y + 24);

//sending out instrument select signal depending on where mouse is clicked.

85

if (btn_click == 3'b100 && piano_button area) instrument select <= 2'b00; //

piano

else if (btn_click == 3'b100 && violin_button_area) instrument_select <= 2'b01; //
violin

else if (btn_click == 3'b100 && cello button area) instrument select <=2'b11; //
cello

else if (btn_click == 3'b100 && flute button area) instrument select <= 2'b10; //
flute

end

// character display: PIANO/VIOLIN/CELLO/FLUTE buttons

wire [63:0] cstring7 = "PIANO";
wire [63:0] cstring8 = "VIOLIN";
wire [63:0] cstring9 = "CELLO";
wire [63:0] cstring10 = "FLUTE";
wire [2:0] cdpixel7;
wire [2:0] cdpixel8;
wire [2:0] cdpixel9;
wire [2:0] cdpixell0;
char_string display2 cd7(clock 65mhz,hcount,vcount,
cdpixel7,cstring7,11'd600,11'd600);
char string display5 cd8(clock 65mhz,hcount,vcount,
cdpixel8,cstring8,11'd600,11'd640);

char_string display2 cd9(clock 65mhz,hcount,vcount,

86

cdpixel9,cstring9,11'd600,11'd680);
char_string display2 cd10(clock 65mhz,hcount,vcount,

cdpixell0,cstring10,11'd600,11'd720);

T
//

// volume slider (the sprite)

//
s

wire volume slider box = (hcount >= 900 && hcount <= 930 && vcount >= 615 &&
vcount <= 736); //region of the slider box

reg [9:0] top_of slider;

wire slider bar = (hcount >= 905 && hcount <= 925 && vcount >=top_of slider &&
//region of the slider bar

vceount <= top_of slider+5);

always @ (posedge clock 65mhz)
begin
if (reset) top_of slider <= 666;

if (btn_click == 3'b100 && mx >= 905 && mx <= 925 && my >= 615 && my <=
736 &&

vcount >=top_of slider &&

vcount <= top_of slider+5) top of slider <= my; // if mouse clicks in the
region of slider box, top of slider

// goes to where
mouse is clicked.

end

87

s
//

// volume adjuster (interface to ac97)

//
R

// Formula to convert pixels to volume. 736 is vcount of bottom of slider box.

// Slider box is 121 pixels tall, and volume is 5 bits wide (32 values). Eliminating the last
two bits of temp value

// (only taking [6:2])has the

// effect of dividing by 4 and rounding down. 120/4=30, which effectively converts pixel

values in slider box to volume.

reg [7:0] temp_value;
always @ (posedge clock 27mhz)
begin
if (reset) volume <= 5'dS;
else begin
temp_value <= 736-top_of slider;
volume <= temp_value [6:2];
end

end

s
//

/1 end of volume slider/adjuster

88

// pipelining OR's for display.

reg black background;

reg freq box OR_cursor box;

reg screen_OR_play button;

reg pause_button OR stop button;
reg instrument_buttons;

reg state buttons;

wire screen = (hcount >= 44 & hcount <= 757 & vcount >=64 & vcount <=564);

// string display rgb registers.

reg [7:0] red_characters;

reg [7:0] green_characters;

reg [7:0] blue characters;

always @ (posedge clock 65mhz)

begin

freq_ box OR cursor box <= frequency box | cursor box;

state_buttons <= pause button | stop button | play button;

instrument_buttons <= piano_button | violin button | cello_button | flute button;

//must display rgb values separately for strings; each is 1-bit, duplicated 8 times.

//cdpixel thru 3: play, pause, stop

89

//cdpixel 4 thru 6: freq box
//cdpixel 7 thru 10: instrument buttons

red characters <= {8{cdpixel[2]}} | {8{cdpixel2[2]}} | {8{cdpixel3[2]}} |
{8{cdpixel7[2]}} |

{8{cdpixel8[2]}} | {8{cdpixel9[2]}} |
{8{cdpixell0[2]} };

green_characters <= {8{cdpixel[1]}} | {8{cdpixel2[1]}} | {8{cdpixel3[1]}} |
{8{cdpixel7[1]}} |

{8{cdpixel8[1]}} |
{8{cdpixel9[1]}} | {8{cdpixellO[1]}};

blue characters <= {8{cdpixel[0]}} | {8{cdpixel2[0]}} | {8{cdpixel3[0]}} |
{8{cdpixel4[0]}} |

{8{cdpixel5[0]}} | {8{cdpixel6[0]}}|
{8{cdpixel7[0]}} | {8{cdpixel8[0]}} |

{8{cdpixel9[0]}} | {8{cdpixell0[0]}};

// region of black background, so that background is not noisy-looking. Black out
everything except for things we need.

black background <= ~(volume slider box | freq box OR cursor box | screen |

red_characters |
green_characters | blue characters);

end

I
//

// select output pixel data: muxes that determine what is displayed where for RGB

//

90

T T

assign vga_out red = volume_slider box ? (cursor_box ?
8'hFF : 8'h00) : (black background ? 8'h00 :

(underline ?

8'h00 : (red_characters | (box ?
8'h00 :

(frequency box ?
((frequency_bar | axes | blue_characters) ? 8'h00 : 8'hFF) :

pixel)))));
assign vga out green = volume_slider box ? ((cursor_box |
slider bar) ? 8'hFF : 8'h00) : (black background ?
8'h00 :

(underline ? 8'h00 :
(green_characters | (box ? 8'h00 :

(frequency box ?

((frequency bar | axes |
blue characters) ? 8'h00 : 8'hFF) : pixel)))));

assign vga out blue = volume_slider box ? (cursor_box ?
8'hFF : (slider bar ? 8'h00 : 8'hFF)) :

(black background ? 8'h00 :
(underline ? 8'h00 : (blue characters | (box ? 8'h00 :

(frequency box ?

(axes? 8'h00 : 8'hFF) :
pixel)))));

7 END OF JING'S CODE /1711111111711

91

// assign vga out red = pixel; /RHS of = used to be just "pixel"
// assign vga out green = pixel; // "

// assign vga out blue = pixel; /"

assign vga out sync b=1'bl; //notused

assign vga out pixel clock = ~clock 65mhz;

assign vga out blank b = ~b;

assign vga out_hsync = hs;

assign vga_out_vsync = vs;

/I debugging

assign led = ~{vram_addr[18:13],reset,switch[0]};

reg [63:0] dispdata;

always @(posedge clk)

// dispdata <= {vram_read data,9'b0,vram_addr};

dispdata <= {ntsc_data,9'b0,ntsc_addr};

endmodule

I i1
// xvga: Generate XVGA display signals (1024 x 768 @ 60Hz)

92

module xvga(vclock,hcount,vcount,hsync,vsync,blank);
input vclock;
output [10:0] hcount;
output [9:0] vcount;
output vsync;
output hsync;

output blank;

reg hsync,vsync,hblank,vblank,blank;
reg [10:0] hcount; // pixel number on current line

reg [9:0] vcount; // line number

// horizontal: 1344 pixels total

// display 1024 pixels per line

wire hsyncon,hsyncoff,hreset,hblankon;
assign hblankon = (hcount == 1023);
assign hsyncon = (hcount == 1047);
assign hsyncoff = (hcount == 1183);

assign hreset = (hcount == 1343);

// vertical: 806 lines total

// display 768 lines

wire vsyncon,vsyncoff,vreset,vblankon;
assign vblankon = hreset & (vcount == 767);

assign vsyncon = hreset & (vcount == 776);

93

assign vsyncoff = hreset & (vcount == 782);

assign vreset = hreset & (vcount == 805);

// sync and blanking
wire next hblank,next vblank;
assign next_hblank = hreset ? 0 : hblankon ? 1 : hblank;
assign next_vblank = vreset ? 0 : vblankon ? 1 : vblank;
always @(posedge vclock) begin

hcount <= hreset ? 0 : hcount + 1;

hblank <= next hblank;

hsync <= hsyncon ? 0 : hsyncoff ? 1 : hsync; // active low

vcount <= hreset ? (vreset ? 0 : vcount + 1) : vcount;
vblank <= next vblank;

vsync <= vsyncon ? 0 : vsyncoff ? 1 : vsync; // active low

blank <= next vblank | (next hblank & ~hreset);
end

endmodule

I

// generate display pixels from reading the ZBT ram

// note that the ZBT ram has 2 cycles of read (and write) latency
//

//' We take care of that by latching the data at an appropriate time.

//

94

// Note that the ZBT stores 36 bits per word; we use only 32 bits here,

// decoded into four bytes of pixel data.

module vram_display(reset,clk,hcount,vcount,vr_pixel,

vram_addr,vram_read data);

input reset, clk;

input [10:0] hcount;
input [9:0] vcount;
output [7:0] vr_pixel;
output [18:0] vram_addr;

input [35:0] vram_read data;

wire [18:0] vram_addr = {1'b0, vcount, hcount[9:2]};
wire [1:0] hc4 = hcount[1:0];

reg [7:0] vr_pixel;

reg [35:0] vr_data_ latched;

reg [35:0] last vr data;

always @(posedge clk)

last vr data <= (hc4==2'd3) ? vr_data latched : last vr data;

always @(posedge clk)

vr_data_latched <= (hc4==2'd1) ? vram_read data : vr_data latched;

95

always @* // each 36-bit word from RAM is decoded to 4 bytes
case (hc4)
2'd3: vr_pixel = last_vr_data[7:0];
2'd2: vr_pixel = last vr data[7+8:0+8];
2'd1: vr_pixel =last vr data[7+16:0+16];
2'd0: vr_pixel = last_vr_data[7+24:0+24];

endcase

endmodule // vram_display

e

// parameterized delay line
module delayN(clk,in,out);
input clk;
input in;
output out;

parameter NDELAY = 3;

reg [NDELAY-1:0] shiftreg;
wire out = shiftreg[NDELAY-1];

always @(posedge clk)
shiftreg <= {shiftreg] NDELAY-2:0],in};

96

endmodule // delayN

M DILINT'S CODE /7700007171111

/11111T711111111777 Filter to correct pixel color///////

/// A pixel color is allowed to change only if the two previous pixels

/// had the same color as the current pixel color
module pixel filter (input clk,

reset,

current_val,

output reg pixel val);

/// Old_pixell and old pixel2 retains the color values of the previous two pixels

/// old_val either retains the vaue of the pixel val or the current val

reg old pixell, old pixel2, old val;

always @(posedge clk) begin

if (reset) begin

old pixell <=0;

old pixel2 <=0;

97

old val <=0;

end

else if ((old pixell == old pixel2) && (old pixel2 == current val)) begin

pixel val <= current _val;

old pixell <=old pixel2;

old pixel2 <= current val;

old val <= current_val;
end

else begin
pixel val <=old val;

old pixell <=old pixel2;
old pixel2 <= current val;

old val <= pixel val;

end

end

endmodule

11111171777777771 ZB T->Filter->BRAM /////////////

98

/// This module will receive 8-bit color value of each pixel from the ZBT

/// and will pass it through a filter and then store it in a BRAM

module zbt to bram #(parameter RANGE=170)
(input clk,
reset,
input [7:0] vr_pixel,

output bram_mem_in);

/// instantiate the filter

reg c¢_val;

wire pixel val, current val;

pixel filter f1(.clk(clk), .reset(reset),.current val(current val),.pixel val(pixel val));

always @(posedge clk) begin

if (vr_pixel > RANGE)

c val <=1; // denotes a black pixel

else c val <=0; //denotes a white pixel

end

assign bram_mem_in = pixel val;

assign current_val = c_val;

99

endmodule

111111111111 BRAM -> xvega ///11111111111]

/// This module will take data from BRAM
/// and convert it to a pixel value to be

/// displayed on the screen

module bram_display #(parameter XSTART=44,

YSTART=64,
XRANGE=713)

(input reset, clk,

input [10:0] hcount,

input [9:0] vcount,

output reg [7:0] br_pixel,

output reg [18:0] bram_addrl,

input bram mem_outl);

always @(posedge clk) begin

if (((hcount >= 44) && (vcount >=64)) && ((hcount <=757) && (vcount
<=564))) begin

br pixel <= bram _mem outl ? 8'b1111 1111: 8'b0;

bram addrl <= (hcount - XSTART) + ((vcount -
YSTART)*XRANGE) + (vcount - YSTART);

end

100

else br_pixel <= 8'b0;

end

endmodule // bram_display

Staff Finder module:

/1777771 STAFE_FINDER ///1111111111171111171711117777

// ' This module will analyze the each pixel value stored in the

// BRAM within the small window. Then will try to locate

// where the begining and end of the staff is depending

// on black pixel count.

module staff finder #(parameter XSTART=44,

YSTART=64,
XRANGE=713,
YRANGE=500)
(input reset, clk, /I clk & reset signals
input staff enable, // enable signal from minor FSM (temp switch[2])
input bram_mem_out3, // bram mem output
output reg [18:0] bram_addr3, // bram mem address
output reg staff done, // idicates that a staff is found

output reg [10:0] start_hent, // hcount of the begining of the first staff line

101

output reg [9:0] start_vent, // vcount of the begining of the last staff line
output reg [9:0] second_vent,
output reg [9:0] third vcent,
output reg [9:0] fourth vcnt,
output reg [9:0] end vent,

output reg [2:0] line);

reg [10:0] h_cnt;

reg [9:0] v_cnt;

reg [10:0] white cnt; // # of white pixels in a row
reg [10:0] black cnt; // # of black pixels in a row
reg [10:0] temp_start hcnt;

reg [9:0] temp_start vcent, temp second vent, temp third vent, temp fourth vent,
temp end vcnt;

reg flag;

always @(posedge clk) begin

if (reset) begin
line <=3p0;
white cnt <=11'b0;
black cnt <=11'D0;
h cnt <=11'd64;
v_cnt <=10'd84;
staff done <=1'b0;

start_hcnt <=11'b0;

102

start_vent <=10b0;

end vent <=10b0;
second vent <= 10'b0;

third vcnt <=10'b0;

fourth vent <= 10D0;

flag <=1'b0;

end

else if (staff enable && !staff done) begin

if ((h_cnt >= (XSTART + 20)) && (v_cnt >=(YSTART + 20))) && ((h_cnt
<=737)

&& (v_cnt <=544))) begin

bram_addr3 <= (h cnt- XSTART) + ((v_cnt - YSTART)*XRANGE) +
(v_cnt - YSTART);

if (line == 5) begin // all the five lines were found
white cnt <=11'b0;
black cnt <=11'D0;
staff done = <=1'bl;

end

else if (white _cnt >=100) begin //row is a space scan the next row
v_cnt <=v cnt+ 1;
white cnt <=11'D0;

black cnt <= 11'D0;

103

end

h cnt <=11'd64;
flag <=flag? 1'b0 : flag;

else if (black cnt >= 100) begin // row is a line

end

line <= flag ? line : (line + 1);
flag <=1'bl;

h cnt <=11'd64;

v_cnt <=v_cnt+1;

white cnt <=11'b0;

black cnt <=11'b0;

if (line == 0) start_hcnt <=temp_start_hcnt;

case (line)

3'd0: start_vcnt <=temp_ start vcnt;
3'dl: second vent <=temp_second vcnt;
3'd2: third vcnt <=temp_third vent;
3'd3: fourth_vent <=temp_fourth vcnt;
3'd4: end vent <=temp end vcnt;

endcase

else if ((bram_mem_out3 == () && (black cnt == 0)) begin

1st black pixel in a line

104

/

black cnt <=black cnt + 1;

h cnt <=h cnt+ 1;

if (flag) begin

if (line == 0) temp_start hcnt <=h_cnt;

case (line)

3'd0: temp_start vent <=v_cnt;
3'd1: temp second vcnt <=v_cnt;
3'd2: temp _third vent<=v_cnt;
3'd3: temp fourth vent <=v_cnt;

3'd4: temp end vent <=v_cnt;

endcase

end
end
else if (bram_mem_ out3 == 1) // just another white pixel
begin

white cnt <= white cnt + 1;

h cnt <=h cnt+ 1;
end
else if ((bram_mem_out3 == 0)) begin // just another black pixel

black cnt <=black cnt+ 1;

105

h cnt <=h cnt+1;
end
end
else staff done <= 1'b1;
end
end
endmodule // staff finder

Staff Display module:

11111111 STAFE DISPLAY /1111117177717

// This module will display the results generated by the

// staff module. Attempts to show where the staffs are.

module staff display #(parameter XSTART=44,
YSTART=64,
XRANGE=713,
YRANGE=500)

(input reset, clk,

input [10:0] hcount,

input [9:0] vcount,
input staff done,

input [10:0] start_hcnt, // hcount of the begining of the first
staff line

input [10:0] end hent, // hcount of the end of the first staff
line

106

input [9:0] start_vcnt, // vcount of the begining of the last staff line
input [9:0] end vcnt, // veount of the end of the last staff line
output reg [7:0] st_pixel,
output reg [18:0] bram_addr2,

input bram mem _out2);

always @(posedge clk) begin
if (staff_done) begin

if (((hcount >= start hcnt) && (vcount >=start vcnt)) && ((hcount <=737)

&& (vcount <=end vcnt))) begin

st pixel <= bram mem out2 ? 8'b1111 1111: 8'bO0;

bram addr2 <= (hcount - XSTART) + ((vcount -
YSTART)*XRANGE) + (vcount - YSTART);

end
else st_pixel <= 8'b0;
end

end

endmodule // staff display

Note Finder module

/11111/l NOTE FINDER //////////11/11]]]

// This module will take in the coordinates of

107

// the staff given from the staff finder and will
// try to located where each note is. To start with
//' T assumed that there's only three notes on the staff

// evenly spaced apart

module note_finderl #(parameter NOTE NUMBER =2, //# of notes in one staff (multiple of 2)

SPACE RANGE =50) //# black pixel counts in a space for a
semibreve

(input clk, reset,notel enable,
input [10:0] start_hcnt,

input local scan_done,
input cnt_done, // from the count_space module
input [14:0] pixel cntl, // counter w/ # black pixels in space 1
input [14:0] pixel cnt2, // counter w/ # black pixels in space 2
input [14:0] pixel cnt3, // counter w/ # black pixels in space 3

input [14:0] pixel cnt4, // counter w/ # black pixels in space 4

output reg notel done, //to the minor FSM
output [10:0] marker,
output reg [10:0] s _hent, // hcount of the start of the space

output reg [10:0] e_hent, // hcount of the end of the space

output reg enable cnt,

output reg enable local scan,

108

output reg [15:0]notel,

output reg [31:0] notel cnt);

reg [15:0] note;

parameter a = 16'h30; // note definition
parameter b = 16'hc0;

parameter ¢ = 16'h300;

parameter d = 16'hc00;

parameter e = 16'h3000;

parameter f= 16'h3;

parameter g = 16'hc;

assign marker = 11'd300;

always @(posedge clk)begin

if (reset | Inotel enable) begin

notel done <=1'b0;

enable cnt <= 1'b0;

enable local scan <= 1'b0;

e hent <= start_hcnt + marker;
s_hent <= start_hcnt;
notel <=16'b0;

109

notel cnt <= 32'b0;

end

else if (note_enable && !note done) begin

if ('local_scan_done)

enable local scan <=1'Dl;
else if (local scan_done)

enable cnt <=1'bl;
else if (cnt_done) begin

enable local scan <= 1'b0;

enable cnt <= 1'b0;
notel cnt <= pixel cntl + pixel cnt2 + pixel cnt3 +
pixel cnt4;
notel done <=1'bl;
// analysing the individual spaces
if ((pixel_cntl >= pixel cnt2) && (pixel cntl > pixel cnt3)
&& (pixel cntl > pixel cnt4)) begin
// 1st space is largest
if (pixel cnt2 <= (SPACE_RANGE + 20)) notel <=e;
// note is E
else notel <=d; // note is
D

end

110

else if ((pixel cnt2 >= pixel cnt3) &&

(pixel cnt2 > pixel cnt4)) begin // 2nd space is largest

if (pixel_cnt3 <= SPACE_RANGE) notel <=c; 1/
note is C
else notel <=b; // note is
B
end
else if (pixel cnt3 >= pixel cnt4) begin // 3rd space is largest
if (pixel cnt4 <= SPACE_RANGE) notel <=a; //
note is A
else notel <=g; // note is
G
end
else notel <=f; // note is F
//else note <= 16'b0;
end
end
end

endmodule // notel finder

Verilog Code for Audio Generator

lab4.v

“default nettype none

117777777777 777
/7

// bi-directional monaural interface to AC97
//

111

177777777777 777

module lab4audio (

input wire clock 27mhz,

input wire reset,

input wire [4:0] volume,

output wire [7:0] audio in data,
input wire [17:0] audio out data,
output wire ready,

output reg audio reset b, // ac97 interface signals
output wire ac97 sdata out,

input wire ac97 sdata in,

output wire ac97 synch,

input wire ac97 bit clock

wire [7:0] command address;

wire [15:0] command data;

wire command valid;

wire [19:0] left in data, right in data;
wire [19:0] left out data, right out data;

// wait a little before enabling the AC97 codec
reg [9:0] reset count;
always @(posedge clock 27mhz) begin
if (reset) begin
audio reset b = 1'b0;
reset count = 0;

end else if (reset count == 1023)
audio reset b = 1'bi;
else
reset count = reset count+1l;
end

wire ac97 ready;
ac97 ac97(.ready(ac97 ready),
.command address (command address),
.command data(command data),
.command valid(command valid),
.left data(left out data), .left valid(1'bil),
.right data(right out data), .right valid(1'b1l),
.left in data(left in data), .right in data(right in data),
.ac97 sdata out (ac97_ sdata out),
.ac97 sdata in(ac97 sdata in),
.ac97 synch(ac97 synch),
.ac97 bit clock(ac97 bit clock));

// ready: one cycle pulse synchronous with clock 27mhz

reg [2:0] ready_sync;

always @ (posedge clock 27mhz) ready sync <= {ready sync[1:0], ac97 ready};
assign ready = ready sync[1l] & ~ready syncl[2];

reg [17:0] out data;
always @ (posedge clock 27mhz)

112

if (ready) out data <= audio out data;
assign audio _in data = left in data[19:12];
assign left out data = {out data, 2'b00};
assign right out data = left out data;

// generate repeating sequence of read/writes to AC97 registers
ac97commands cmds (.clock(clock 27mhz), .ready(ready),
.command address (command address),
.command data(command data),
.command valid(command valid),
.volume (volume) ,
.source (3'b000)) ; // mic
endmodule

// assemble/disassemble AC97 serial frames
module ac97 (

output reg ready,

input wire [7:0] command address,

input wire [15:0] command data,

input wire command valid,

input wire [19:0] left data,

input wire left valid,

input wire [19:0] right data,

input wire right valid,

output reg [19:0] left in data, right in data,

output reg ac97 sdata out,

input wire ac97 sdata in,

output reg ac97 synch,

input wire ac97 bit clock

reg [7:0] bit count;

reg [19:0] 1 cmd addr;

reg [19:0] 1 cmd data;

reg [19:0] 1 left data, 1 right data;
reg 1 cmd v, 1 left v, 1 right v;

initial begin
ready <= 1'bO0;
// synthesis attribute init of ready is "0";
ac97 sdata out <= 1'b0;
// synthesis attribute init of ac97 sdata out is "O0";
ac97 synch <= 1'b0;
// synthesis attribute init of ac97 synch is "0";

bit count <= 8'h00;

// synthesis attribute init of bit count is "0000";
1 cmd v <= 1'b0;

// synthesis attribute init of 1 cmd v is "0";

1 left v <= 1'bO;

// synthesis attribute init of 1 left v is "O0";

1 right v <= 1'b0;

// synthesis attribute init of 1 right v is "0";

113

left in data <= 20'h00000;

// synthesis attribute init of left in data is "00000";

right in data <= 20'h00000;

// synthesis attribute init of right in data is "00000";
end

always @(posedge ac97 bit clock) begin
// Generate the sync signal

if (bit count == 255)
ac97 synch <= 1'bi1;
if (bit count == 15)

ac97 synch <= 1'bO;

// Generate the ready signal

if (bit count == 128)
ready <= 1'b1l;
if (bit count == 2)

ready <= 1'bO;

// Latch user data at the end of each frame. This ensures that the
// first frame after reset will be empty.
if (bit count == 255) begin

1 cmd addr <= {command address, 12'h000};

1 cmd data <= {command data, 4'hO};

1 cmd v <= command valid;

1 left data <= left data;

1 left v <= left valid;

1 right data <= right data;

1 right v <= right valid;
end

if ((bit count >= 0) && (bit count <= 15))
// Slot 0: Tags
case (bit count[3:0])

4'h0: ac97 sdata out <= 1'bil; // Frame valid
4'hl: ac97 sdata out <= 1 cmd v; // Command address valid
4'h2: ac97 sdata out <= 1 cmd v; // Command data valid

4'h3: ac97 sdata out <= 1 left v; // Left data valid
4'h4: ac97 sdata out <= 1 right v; // Right data valid
default: ac97 sdata out <= 1'bO;
endcase
else if ((bit count >= 16) && (bit count <= 35))
// Slot 1: Command address (8-bits, left justified)
ac97 sdata out <= 1 cmd v ? 1 cmd addr[35-bit count] : 1'bO;
else if ((bit count >= 36) && (bit count <= 55))
// Slot 2: Command data (16-bits, left justified)
ac97 sdata out <= 1 cmd v ? 1 cmd data[55-bit count] : 1'bO;
else if ((bit count >= 56) && (bit count <= 75)) begin
// Slot 3: Left channel
ac97 sdata out <= 1 left v ? 1 left data[19] : 1'bO;
1 left data <= { 1 left data[18:0], 1 left data[19] };
end
else if ((bit _count >= 76) && (bit count <= 95))
// Slot 4: Right channel

114

ac97 sdata out <= 1 right v ? 1 right data[95-bit count] : 1'bO;
else
ac97 sdata out <= 1'bO;

bit count <= bit count+1;
end // always @ (posedge ac97 bit clock)

always @(negedge ac97 bit clock) begin
if ((bit count >= 57) && (bit count <= 76))
// Slot 3: Left channel
left in data <= { left in data[18:0], ac97 sdata in };
else if ((bit count >= 77) && (bit count <= 96))
// Slot 4: Right channel
right in data <= { right in data[18:0], ac97 sdata in };
end

endmodule

// issue initialization commands to AC97
module ac97commands (

)

input wire clock,

input wire ready,

output wire [7:0] command address,
output wire [15:0] command data,
output reg command valid,

input wire [4:0] volume,

input wire [2:0] source

reg [23:0] command;

reg [3:0] state;

initial begin
command <= 4'hO;
// synthesis attribute init of command is "O0";
command valid <= 1'b0;
// synthesis attribute init of command valid is "0";
state <= 16'h0000;
// synthesis attribute init of state is "0000";

end

assign command address = command[23:16];
assign command data = command[15:0];

wire [4:0] vol;
assign vol = 31-volume; // convert to attenuation

always @(posedge clock) begin
if (ready) state <= state+1;

case (state)
4'h0: // Read ID
begin
command <= 24'h80 0000;
command valid <= 1'b1l;
end

115

4'hl: // Read ID
command <= 24'h80 0000;
4'h3: // headphone volume
command <= { 8'h04, 3'b000, vol, 3'b000, wvol };
4'h5: // PCM volume
command <= 24'h18 0808;
4'h6: // Record source select
command <= { 8'hlA, 5'b00000, source, 5'b00000, source};
4'h7: // Record gain = max
command <= 24'h1C_OFOF;
4'h9: // set +20db mic gain
command <= 24'hOE 8048;
4'hA: // Set beep volume
command <= 24'hOA 0000;
4'hB: // PCM out bypass mix1
command <= 24'h20 8000;
default:
command <= 24'h80 0000;
endcase // case(state)
end // always @ (posedge clock)
endmodule // ac97commands

/1777777777777 777/777777777777777777777777
//

// 6.111 FPGA Labkit -- Template Toplevel Module

//

// For Labkit Revision 004

// Created: October 31, 2004, from revision 003 file

// Author: Nathan Ickes, 6.111 staff

//

/7777777777777 777/77777777

module lab4(
// Remove comment from any signals you use in your design!

// AC97
output wire /*beep,*/ audio reset b, ac97 synch, ac97 sdata out,
input wire ac97 bit clock, ac97 sdata in,

// VGA

//output wire [7:0] vga out red, vga out green, vga out blue,

//output wire vga out sync b, vga out blank b, vga out pixel clock,
vga out hsync, vga out vsync,

// NTSC OUT

/*

output wire [9:0] tv_out ycrcb,

output wire tv _out reset b, tv out clock, tv out i2c clock, tv out i2c data,
output wire tv _out pal ntsc, tv out hsync b, tv out vsync b, tv out blank b,
output wire tv _out subcar reset;

*/

// NTSC IN
/*

116

input wire [19:0] tv_in ycrch,

input wire tv_in data valid, tv_in line clockl, tv_in line clockz2, tv_in_aef,
tv_in hff, tv in aff,

output wire tv in i2c clock, tv in fifo read, tv in fifo clock, tv in iso,
tv_in reset b, tv_in clock,

inout wire tv_in i2c data,

*/

// ZBT RAMS

//inout wire [35:0] ramO data,

//output wire [18:0] ramO address,

//output wire /* ramO adv 1d, */ ramO clk, ramO cen b, /* ramO ce b, */ /%
ramO oe b, */ ram0 we b,

//output wire [3:0] ramO bwe b,

/*

inout wire [35:0]raml data,

output wire [18:0]raml address,

output wire raml adv_1d, raml clk, raml cen b, raml ce b, raml oe b,
raml we D,

output wire [3:0] raml bwe Db,

input wire clock feedback in,

output wire clock feedback out,

*/

// FLASH

/*

inout wire [15:0] flash data,

output wire [23:0] flash address,

output wire flash ce b, flash oe b, flash we b, flash reset b, flash byte b,
input wire flash sts,

*/

// RS232

/*

output wire rs232 txd, rs232 rts,
input wire rs232 rxd, rs232 cts,
*/

// PS2

//inout wire mouse clock, mouse data,// keyboard clock, keyboard data,

// FLUORESCENT DISPLAY
output wire disp blank, disp clock, disp rs, disp ce b, disp reset b,

//input wire disp data in,
output wire disp data out,

// BUTTONS, SWITCHES, LEDS
input wire buttonO,

117

//input wire buttoni,
//input wire button2,
//input wire button3,
input wire button enter,
//input wire button right,
//input wire button left,
input wire button down,
input wire button up,
input wire [7:0] switch,
output wire [7:0] 1led,

// USER CONNECTORS, DAUGHTER CARD, LOGIC ANALYZER

//input wire user1[1:0],

//input wire useri1[4],

//output wire userl[3:2],

input wire [2:0] userl,

output wire [1:0] user2,

//inout wire [31:0] userl,

//inout wire [31:0] user2,

//inout wire [31:0] user3,

//inout wire [31:0] user4,

//inout wire [43:0] daughtercard,

//output wire [15:0] analyzerl data, output wire analyzerl clock,
//output wire [15:0] analyzer2 data, output wire analyzer2 clock,
//output wire [15:0] analyzer3 data, output wire analyzer3 clock,
//output wire [15:0] analyzer4 data, output wire analyzer4 clock,

// SYSTEM ACE

/*

inout wire [15:0] systemace data,

output wire [6:0] systemace address,

output wire systemace ce b, systemace we b, systemace oe b,
input wire systemace irqg, systemace mpbrdy,

*/

// CLOCKS

//input wire clockil,
//input wire clock2,
input wire clock 27mhz

1777777777777 777
//
// Reset Generation
//
// A shift register primitive is used to generate an active-high reset
// signal that remains high for 16 clock cycles after configuration finishes
// and the FPGA's internal clocks begin toggling.
//
/177777777777 777
wire reset 27mhz, power on reset27, user reset27;
SRL16 reset sr27 (.D(1'b0), .CLK(clock 27mhz), .Q(power on reset27),
.AO(1'b1), .Al(1'b1l), .A2(1'bl), .A3(1'bl));
defparam reset sr27.INIT = 16'hFFFF;

118

debounce dbreset27 (power on reset27, clock 27mhz, ~button enter,
user reset27);
assign reset 27mhz = power on reset27 | user reset27;

wire [7:0] from ac97 data;
wire [17:0] to_ac97 data;
wire ready;

// allow user to adjust volume
wire vup,vdown, vO;
reg old vup,old vdown;

wire [4:0] volume;

// AC97 driver
lab4audio a(clock 27mhz, reset 27mhz, volume, from ac97 data, to_ac97 data,
ready,
audio reset b, ac97 sdata out, ac97 sdata in,
ac97 synch, ac97 bit clock);

// push ENTER button to record, release to playback

wire playback;

debounce
benter (.reset (reset 27mhz),.clock(clock 27mhz), .noisy(button enter),.clean(play
back)) ;

// switch 0 up for filtering, down for no filtering
wire filter;
debounce
swO (.reset (reset 27mhz),.clock(clock 27mhz), .noisy(switch[0]),.clean(filter));

// light up LEDs when recording, show volume during playback.
// led is active low
assign led = ~{3'b000, volume};

reg [63:0] tdata = 64'd0;

wire [18:0] grabbed scale;

wire [7:0] scale, count, last count;
wire [1:0] state;

wire key pressed;

assign {key pressed, state, scale, last count} = grabbed scale;
display 16hex dhex (reset 27mhz, clock 27mhz, tdata, disp blank, disp clock,
disp rs, disp ce b, disp reset b, disp data out);
wire s7;
debounce
sw7 (.reset (reset 27mhz),.clock(clock 27mhz),.noisy(switch[7]),.clean(s7)) ;
wire [127:0] debug out;
reg sync_ready;

119

always @(posedge clock 27mhz) begin
sync_ready <= ready;

end

wire audio done, beat delay;

wire [2:0] sheet address, sheet address out;
wire [15:0] sheet data;

wire play, pause, stop;

wire [1:0] instrument select;

wire enable audio;

parameter RCV_DATA WIDTH = 27;
reg [RCV _DATA WIDTH-1:0] received data, final received data;
assign sheet address = (switch[7] ? 0 : sheet address out);

//separate data from other FPGA into corresponding signals
assign {volume, enable audio, instrument select, play, pause, stop,
sheet data} = final received data;

//AUDIO SYNTHESIZER MODULE

audio synthesizer #(
.TESTING (1))

uut (
.clock(clock 27mhz),
.global reset (reset 27mhz),
.ready (ready),
.play(play),
.pause (pause) ,
.player switch(s7),
.sheet address(sheet address out),
.sheet data(sheet data),

.switch tone(switch[6:0]),
.instrument switch(instrument select),
.stop (stop),
.debug out (debug out),
.sound out (to_ac97 data)
) s

//transmission code

// Dilini -> Lance @ Lance's end

wire clock 1mhz, data in, lance ready;

reg data out;

wire power on reset 1mhz; // remain high for first 16 clocks

SRL16 reset sr (.D(1'b0), .CLK(clock 1mhz), .Q(power on reset 1mhz),
.AO(1'b1l), .A1(1'bl), .A2(1'bl), .A3(1'bl));

120

defparam reset sr.INIT = 16'hFFFF;

// ENTER button is user reset

wire reset 1mhz,user reset 1mhz;

debounce dbl(power on reset 1mhz, clock 1mhz, ~button enter,
user reset 1mhz);

assign reset 1lmhz = user reset 1mhz | power on reset 1mhz;

always @(negedge clock 1mhz) begin

if (reset 1mhz) begin
received data <= 0;
final received data <= 0;
end
else begin
if (!lance ready) received data <= {data in,
received data[RCV_DATA WIDTH-1:1]};
else received data <= 0;

if (lance_ready) begin
final received data <= received data;
end

end
end

// Lance -> Dilini @ Lance's end

wire [4:0] send data;

reg data to dilini, dilini ready;

reg [3:0] talk cnt;

assign send data = {audio _done, beat delay, sheet address};
always @(posedge clock 1mhz) begin

if (reset 27mhz) begin

talk cnt <= 4'd0;
data to dilini <= 1'b0;
dilini ready <= 1'b0;
end
else if (talk cnt != 5) begin
data out <= send data[talk cnt];

dilini ready <= 1'bO;
//send data <= {1'b0, send data[4:1]};

121

talk cnt <= talk cnt + 1;
end
else begin
talk cnt <= 0;
dilini ready <= 1'bil;
end
end

assign clock 1mhz = userl[0];
assign data in = useril[1];
assign lance ready = userl[2];

assign user2[0] = data out;
assign user2[1] = dilini ready;
endmodule

122

audio_generator.v

module audio synthesizer # (parameter
TESTING=0,

//width of the tick bits in the event player's ROM
LOG_TICKS=11,

LOG_TICKS PER_SECOND=3,

//width of the audio output
AUDIO WIDTH=18,

LOG_INSTRUMENTS=2,

//the octave played by the sheet player module
PLAYER OCTAVE=4,

//the last supported harmonic (supports "1 + this parameter" harmonics)
LAST HARMONIC=4,

//last supported note (supports all notes when this = 11)
LAST NOTE=11,

//last octave (supports "1 + this parameter" octaves)
LAST OCTAVE=7,

//the amount of bits to clip off of sound output to prevent overflow
SHIFT FACTOR=2,

//the length of a beat in samples
SAMPLE PER BEAT=256,

//the duration of a quarter note in samples
QRT DURATION=192,

//samples per second (logarithmic)
LOG_SAMPLES=8,

//number of pulses per second
NUM_ PULSES=48000,

LOG HARMONICS=3,
LOG_NOTES=4,
LOG_OCTAVES=3)

//allows 6 switches which play keys
input wire [6:0] switch tone,

//selects the instrument played by the sheet player module
input wire [LOG INSTRUMENTS-1:0] instrument switch,

input wire clock,

123

//reset signal from the FPGA or user
input wire global reset,
input wire ready,

//playback signals
input wire play,
input wire pause,
input wire stop,

//switches between the event and sheet players
input wire player switch,

//outputs from the sheet player

input wire [15:0] sheet data,
output wire [3:0] sheet address,

output reg signed [AUDIO WIDTH-1:0] sound out

parameter LOG _KEYS = LOG NOTES + LOG_ OCTAVES;

//width of THETA input to sine module
parameter THETA WIDTH = 16;

//width of delta values output by ADSR parameters modules
parameter DELTA WIDTH = 10;

//same as AUDIO WIDTH
parameter DATA WIDTH = 18;

//EVENT PLAYER PARAMETERS
parameter EVENT ADDR WIDTH 11;
parameter EVENT DATA WIDTH = 21;

//SHEET PLAYER PARAMETERS
parameter SHEET ADDR WIDTH=3;
parameter SHEET DATA WIDTH=16;
parameter NOTE INFO WIDTH=2;

//SIMULATION PARAMETER SETTINGS (ModelSim doesn't allow long time periods
to be recorded

//more must happen within a shorter time period)

// parameter SAMPLE PER BEAT = 128;

// parameter QRT DURATION=128;

// parameter LOG SAMPLES = 8;

// parameter NUM PULSES = 48000;

//parameter LOG TICKS PER SECOND = 3;

// parameter SAMPLE PER BEAT = 2;
// parameter QRT DURATION=1;

124

// parameter NUM PULSES = 16;
// parameter LOG SAMPLES = 2

parameter SCALE WIDTH = 8;
parameter PRECISION WIDTH = 16;

localparam [PRECISION WIDTH-1:0] PULSE PER SAMPLE = (NUM PULSES /
(1<<LOG_SAMPLES)) ;

reg [(1<<LOG_INSTRUMENTS)-1:0] keys pressed [(1<<LOG_KEYS)-1:0];

//reset signal activated by the player modules or changes in the
instrument or player
reg reset internal;

wire reset = (global reset || stop || reset internal);

reg playing;

wire enable = (ready && playing);

reg last player switch;

reg [LOG INSTRUMENTS-1:0] last instrument switch;

//resets the players when the player or instrument is changed
always @ (posedge clock) begin
last player switch <= player switch;
last instrument switch <= instrument switch;
if (reset) begin
reset internal <= 1'bO;
playing <= 1'bO0;
end
else if ((player switch != last player switch) ||
(last_instrument switch != instrument switch)) begin
reset internal <= 1'bil;
playing <= 1'bO0;
end
else begin
reset internal <= 1'b0;
if (play) playing <= 1'b1;
else if (pause) playing <= 1'bO0;
end
end

SIGNAL S~ === === m — oo /7
wire stage2 enable;
wire [LOG_HARMONICS-1:0] stage2 harmonic_index;

125

wire [LOG NOTES-1:0] stage2 note index;
wire [LOG_OCTAVES-1:0] stage2 octave index;

reg stage5 enable, stage3 enable, stage4 enable, stage6 enable;

reg [LOG_HARMONICS-1:0] stage5 harmonic_index, stage3 harmonic_ index,
stage4 harmonic index, stage6 harmonic index;

reg [LOG NOTES-1:0] stage5 note index, stage3 note index,
stage4 note index, stage6 note index;

reg [LOG OCTAVES-1:0] stage5 octave index, stage3 octave index,
stage4 octave index, stage6 octave index;

STGNAL S == === = —m oo m /7

wire sample increment, beat increment;
wire [PRECISION WIDTH-1:0] pulse count, sample count;

overflow counter #(
.COUNT_WIDTH(PRECISION_WIDTH),
.MAX COUNT (PULSE PER SAMPLE-1))
pulse to sample (
.clock (clock),
.increment (enable),
.restart (reset),

.count (pulse count),
.overflow(sample increment)
) s

overflow counter #(
.COUNT WIDTH (PRECISION WIDTH),
.MAX COUNT (SAMPLE PER BEAT-1))
sample to beat (
.clock (clock),
.increment (sample increment),
.restart (reset),

.count (sample count),
.overflow(beat increment)

[/ kR ko ko kkkk ok kkkk ok kk ok k ko kA hk kA k kR k ok kk ok kkkkkhkkhk kA hk kA k kX khkkhkkkhkkkhkkkkkk Kk * %
Kk K kK kK ok ok ok ok ok Kok ok ok Kk

//STAGE 1: GENERATE INDICES FOR SPECIFYING TONES AND THEIR HARMONICS

[/ KRk ok kkkkkkkkkkhkhkkkkkhkkkhkkkhkhkkhkkhkkhkkhkkhkkkhkkkkkkhkkhkkkhkkhkkkkkk Kk k%
hkkkkkkhkkhkkkkkkkk*

tone index selector #(
.LAST OCTAVE (LAST OCTAVE) ,
.LAST NOTE (LAST NOTE),
.LAST HARMONIC (LAST HARMONIC),
.LOG_HARMONICS(LOG_HARMONICS),

126

.LOG_NOTES (LOG_NOTES) ,
.LOG_OCTAVES (LOG_OCTAVES)
)
tone index select (
.clock (clock),
.reset (reset),
.enable in(enable),

.enable out(stage2 enable),

.harmonic index(stage2 harmonic_ index),
.note index(stage2 note index),

.octave index(stage2 octave index)

VAR EEEREEEREEEEREEEREEEREEEEE RS R EEE S

khkkkkkkhkhkhkkhkhkhkkhkkkk*k

//STAGE 2: GET THETA INCREMENTS AND INITIAL THETA FOR EACH TONE

VAR EEEEEEEEEEEEEEREEE S

*khkkkhkkhkkhkkhkkhkhkhkkhkhkkhkkhk*k

reg [(1<<LOG INSTRUMENTS)-1:0] instrument keys;
wire [(1<<LOG_ INSTRUMENTS)-1:0] mem keys, combined keys;

always @ (posedge clock) begin
if (reset) instrument keys <= 0;
else if (stage2 enable && (stage2 octave index == 4)) begin
if ((1<<stage2 note index) & switch tone) instrument keys <=
(1<<instrument switch) ;
else instrument keys <= 0;
end
else instrument keys <= 0;

end

assign combined keys = (mem keys | instrument keys);

wire done playing, writable;

wire [LOG NOTES-1:0] write note index, event write note index,

sheet write note index;
wire [LOG _OCTAVES-1:0] write octave index, event write octave index,

sheet write octave index;
wire [LOG_INSTRUMENTS-1:0] write instrument index,
event write instrument index, sheet write instrument index;

127

wire write key pressed, sheet write key pressed, event write key pressed,

key press we, sheet key press we, event key press we;

//switches inputs the key state RAM depending on the player
muxz2 #(

.W(LOG_NOTES+LOG_OCTAVES+LOG_INSTRUMENTS+2))
m2 (

.sel(player switch),

.a({sheet write note index, sheet write octave index,

sheet write instrument index, sheet write key pressed, sheet key press we}),

.b({event write note index, event write octave index,

event write instrument index, event write key pressed, event key press we}),

.z({write note index, write octave index, write instrument index,

write key pressed, key press we})

)

//debug outputs for the two player modules
wire[63:0] sheet debug;
wire[63:0] rose debug;

//Sheet music for debuggings

//wire [3:0] sheet address;
//wire [15:0] sheet data;

// little lamb sheet 1lls (
// .index (sheet address),
// .beat info(sheet data)

/70

sheet player #(
.SHEET ADDR WIDTH (SHEET ADDR WIDTH),
.SHEET DATA WIDTH (SHEET DATA WIDTH),
.NOTE INFO WIDTH(NOTE INFO WIDTH),

.QRT DURATION (QRT DURATION),
.LAST OCTAVE (LAST_ OCTAVE) ,

.LOG_INSTRUMENTS (LOG_ INSTRUMENTS) ,

.LOG_SAMPLES (LOG_SAMPLES) ,

.LOG_NOTES (LOG_NOTES) ,

.LOG_OCTAVES (LOG_OCTAVES) ,

.LOG_HARMONICS (LOG_HARMONICS))
sheet playerl (

.clock (clock),
.reset (reset),
.enable in(writable && playing),

//specifies next beat switches to next beat's notes

128

.beat enable(beat increment),

//specifies next sample, indicates when the note should beat
//turned off in conjunction with the DURATION parameter which
//is given in terms of samples

.sample enable(sample increment),

//this module can only play one octave from one instrument at a
time

//this selects which octave and instrument to use

.octave index (PLAYER OCTAVE),

.instrument index (instrument switch),

.sheet data(sheet data),
.sheet address(sheet address),

.done playing(done playing),

//0UTPUTS TO KEY PRESS MEMORY
.write note index(sheet write note index),
.write octave index(sheet write octave index),
.write instrument index(sheet write instrument index),
.key pressed(sheet write key pressed),
.key press we(sheet key press we)
) s

key state memoryX # (
.LOG_INSTRUMENTS (LOG INSTRUMENTS) ,
.LOG_NOTES (LOG_NOTES) ,
.LOG_OCTAVES (LOG_OCTAVES))

key mem (
.clock (clock),
.reset (reset),

//.swap (sample increment),

.write enable(key press we),
.read _enable(stage2 enable),

.read note index(stage2 note index),
.read octave index(stage2 octave index),

.write note index(write note index),

.write octave index(write octave index),

.write instrument index(write instrument index),
.write key pressed(write key pressed),

.writable (writable),
.keys pressed out (mem keys)

event player #(

129

.EVENT ADDR WIDTH (EVENT ADDR WIDTH),
.EVENT DATA WIDTH (EVENT DATA WIDTH),
.LOG_TICKS (LOG_TICKS),

.NUM PULSES (NUM_ PULSES) ,
.LOG_TICKS PER SECOND (LOG TICKS PER SECOND),

.LOG INSTRUMENTS (LOG INSTRUMENTS) ,

.PRECISION WIDTH(PRECISION WIDTH),

.LOG_NOTES (LOG_NOTES) ,

.LOG_OCTAVES (LOG_OCTAVES) ,

.LOG_HARMONICS (LOG_HARMONICS))
eplayer (

.clock (clock),

.reset (reset),

.enable (writable && playing && !enable),

.play(playing),

.ready (ready),

//0UTPUTS TO KEY PRESS MEMORY

.write note index(event write note index),

.write octave index(event write octave index),

.write instrument index(event write instrument index),
.key pressed(event write key pressed),

.key press we(event key press we)

wire [THETA WIDTH-1:0] theta delta, initial theta;

tone theta params #(
.THETA WIDTH(THETA WIDTH),
.LOG_HARMONICS (LOG_HARMONICS),
.LOG_NOTES (LOG_NOTES) ,
.LOG_OCTAVES (LOG_OCTAVES)

)

tone theta paramsl (
.clock (clock),
.reset (reset),

.harmonic index(stage2 harmonic index),
.note index(stage2 note index),
.octave index(stage2 octave index),

.theta delta(theta delta),
.initial theta(initial theta)
)
wire [DATA WIDTH-1:0] tone mod data in;
wire signed [DATA WIDTH+LOG INSTRUMENTS-1:0] combined tone out;
wire tone mod enable out;

timbre transformer #(

130

.LOG_INSTRUMENTS (LOG_INSTRUMENTS) ,

.DELTA WIDTH(DELTA WIDTH),

.DATA WIDTH (DATA WIDTH),
.LOG_SAMPLES (LOG_SAMPLES) ,

.NUM_ PULSES (NUM_PULSES) ,

.SCALE WIDTH (SCALE WIDTH),
.PRECISION WIDTH(PRECISION WIDTH),

.LAST HARMONIC (LAST HARMONIC),

.LOG_HARMONICS (LOG_HARMONICS),

.LOG_NOTES (LOG_NOTES) ,

.LOG_OCTAVES (LOG_OCTAVES))
inst tone mod (

.clock(clock),

.reset (reset),

.enable in(stage2 enable),

.sample increment (sample increment),

.instrument keys(combined keys),

.harmonic index(stage2 harmonic_ index),
.note index(stage2 note index),
.octave index(stage2 octave index),

.data_in(tone mod data in),

.enable out(tone mod enable out),
.combined tone out(combined tone out)
)

always @ (posedge clock) begin
stage3 enable <= stage2 enable;
stage3 note index <= stage2 note index;
stage3 harmonic_ index <= stage2 harmonic_ index;
stage3 octave index <= stage2 octave index;

end

[/ Kk kkkkkkkhkkkhkhhkkhhkkhhkhhkhkhkhhkkhkkhkkkkkhkkkhkhkhhkkhkkhkkhkkhkkkhkk k Kk k%
kkkkokokokokokokokokokokokokokok

//STAGE 3: COMPUTE CURRENT THETA VALUES FOR EACH TONE AND STORE

[/ kR ko ko kkkk ok kkkk ok kk ok k ko kA hk kA k kR k ok kk ok kkkkkhkkhk kA hk kA k kX khkkhkkkhkkkhkkkkkk Kk * %

khkkkhkhkhkkhkhkhkkhkhkhkkhkkkk*k

wire [THETA WIDTH-1:0] theta;

theta increment memory #(
.THETA WIDTH(THETA WIDTH),

.LOG_HARMONICS (LOG_HARMONICS),

.LOG_NOTES (LOG_NOTES) ,
.LOG_OCTAVES (LOG_OCTAVES)

131

)
theta mem (
.clock (clock),
.reset (reset),
.enable in(stage3 enable),

.harmonic index(stage3 harmonic index),
.note index(stage3 note index),
.octave index(stage3 octave index),

.theta delta(theta delta),
.initial theta(initial theta),

.theta (theta)
) s

always @ (posedge clock) begin
stage4 enable <= stage3 enable;
stage4 note index <= stage3 note index;
stage4 harmonic index <= stage3 harmonic_ index;
stage4 octave index <= stage3 octave index;

end

[/ KRk kkkkkkkkkhkhhkkhkkhkkhkhkhkhkkhkkhkkhkkkkkhkkkhkhkhkhkkhkkhkkhkkhkkkkkk Kk k%
Kk Kk ok kK ok ok ok ok ok ok ok ok ok ok Kk

//STAGE 4: COMPUTE SINE FUNCTION VALUES FOR TONE'S THETAS

[/ Kk kkkkkkkkkkhkkhkkhkkhhkkhhkhkhkkhkkhkkhkkkkkhkhkkhhkhkhkkhkkhkkhkkkkkhkkk Kk * %
kkkkkkkkkkkkkkkkkk

wire rfd, sine ready;
wire [DATA WIDTH-1:0] sine;

bigsine sinfunc (
.THETA (theta) ,
.CLK(clock),
.ND (stage4 enable),
.RFD (rfd),
.RDY (sine_ ready),
.SINE (sine)

) s

assign tone mod data in = sine;

always @ (posedge clock) begin
stage5 enable <= stage4 enable;
stage5 note index <= stage4 note index;
stage5 harmonic_ index <= stage4 harmonic_ index;
stage5 octave index <= stage4 octave index;

end

VAR EEEEEEEEEEEEEEREEE S
*khkkkhkhkhkkhkkhkkhkhkkhkkhkhkkhkkhk*k

//STAGE 5

132

VAREEEEEEEEEEEEEEEEEE RS EEEEEE RS e Rt EE e R R R R R R R R R R R R R R RS S

khkkkkkkhkhkkkhkhkkkkkkk*k

always @ (posedge clock) begin
stage6 _enable <= stage5 enable;
stage6 note index <= stage5 note index;
stage6 harmonic index <= stage5 harmonic index;
stage6 octave index <= stage5 octave index;

end

YVAREEES S

khkkkkkkhkhkhkkhkhkhkkhkkkk*k

//STAGE 6

VAR EEEEEEEEEEEEEEREEE S

khkkkkhkkhkhkhkkhkhkkkkkkk*k

reg signed
[DATA WIDTH+LOG OCTAVES+LOG NOTES+LOG_ HARMONICS+LOG INSTRUMENTS-1:0]
aggregate sound;

//combine sounds together from timbre transformer
//and output sound on ready pulse
always @ (posedge clock) begin
if (reset) begin
aggregate sound <= O0;
sound out <= 0;
end
else begin
if (ready) aggregate sound <= 0;
else if (tone mod enable out) begin
aggregate sound <= aggregate sound + combined tone out;
end
if (ready) sound out <= (aggregate sound>>>SHIFT FACTOR) ;
end
end

endmodule

audio_gen_ submodules.v

Module: tone index selector

Description:
Iterates through the all possible tones. Tones are specified by a
harmonic, note, and octave index. Outputs an enable signal when it is
iterating to indicate to other modules relevant data is being
transmitted.

Parameters:

133

Defined in Audio Generator Module

Inputs:
clock - the clock pulse (27 MHz)
reset - sets module back to original state
enable in - pulse indicating that iteration should restart and begin

Outputs:
enable out - indicates that the Tone Index Selector is outputting index
data (initiates
active period of subsequent modules in the pipeline)
harmonic_index - the harmonic index
note index - the note index
octave index - the octave index

module tone index selector #(parameter
LOG_HARMONICS=2,
LAST HARMONIC=3,
LOG_NOTES=4,
LAST NOTE=11,
LOG_OCTAVES=3,
LAST OCTAVE=7)

input wire clock,
input wire reset,
input wire enable in,

output wire enable out,

output wire [LOG HARMONICS-1:0] harmonic_ index,
output wire [LOG NOTES-1:0] note index,

output wire [LOG OCTAVES-1:0] octave index

//tells the counters to continue incrementing
reg increment;

//indicates that all possible indices have been output
wire done;

//indicates to counters that they should reset their counts
wire restart = (reset || enable in);

wire note increment, octave increment;
//while incrementing, enable out is set high because
//new indicees are being output

assign enable out = increment;

always @ (posedge clock) begin

134

if (reset) begin
increment <= 1'bO0;
end
else begin
//when enable in goes high, begin incrementing
if (enable in) begin
increment <= 1'b1;
end
else begin
//stop when last counter overflows
if (done) increment <= 1'bO;
end
end

end

//iterates through the harmonic indices
overflow counter #(

.COUNT WIDTH(LOG HARMONICS),

.MAX COUNT (LAST HARMONIC))
harmonic counter (

.clock (clock),

.increment (increment) ,

.restart (restart),

.count (harmonic_index),
.overflow(note increment)
) s

//iterates through the note indices
overflow counter #(
.COUNT WIDTH(LOG NOTES),
.MAX COUNT (LAST NOTE))
note counter (
.clock (clock),
.increment(note_increment),
.restart (restart),

.count (note index),
.overflow(octave increment)

)

//iterates through the octave indices
overflow counter #(
.COUNT WIDTH (LOG_ OCTAVES) ,
.MAX COUNT (LAST OCTAVE))
octave counter (
.clock (clock),
.increment (octave increment),
.restart (restart),

.count (octave index),
.overflow(done)

135

endmodule

Module: theta increment memory
Description:

Stores the current value of theta for each tone and increments this value
based on

the theta delta input when enabled.

Parameters:
Defined in Audio Generator Module

Inputs:
clock - the clock pulse (27 MHz)
reset - sets module back to original state (using initial theta values)
enable in - signals active period

harmonic_index - the harmonic index for the current tone parameter inputs
note index - the note index for the current tone parameter inputs
octave index - the octave index for the current tone parameter inputs

-TONE PARAMETER INPUTS-
theta delta - the increase in theta for the specified tone (corresponds
the the
frequency of the tone)
initial theta - the initial value for theta for a specific tone used when
the module is uninitialized (first active period or after reset)

Outputs:
theta - the new value for theta (old value for theta + theta delta)

Notes:
1. Uses a two-port BRAM. Reads old values from the read port and
writes the new values
to the write port.

module theta increment memory #(parameter
THETA WIDTH=16,

LOG_HARMONICS=2Z,
LOG_NOTES=4,
LOG_OCTAVES=3)
input wire clock,
input wire reset,

input wire enable in,

input wire [LOG _HARMONICS-1:0] harmonic_ index,

136

input wire [LOG NOTES-1:0] note index,
input wire [LOG OCTAVES-1:0] octave index,

input wire [THETA WIDTH-1:0] theta delta,
input wire [THETA WIDTH-1:0] initial theta,

output reg [THETA WIDTH-1:0] theta

//width of value used to index in the BRAMs
localparam INDEX_WIDTH = LOG_OCTAVES + LOG_NOTES + LOG_HARMONICS;

//indicates whether an active period has passed since last reset or
initialization of FPGA
reg initialized, last enable;

wire [THETA WIDTH-1:0] last theta;

//delay theta delta so that it lines up with the output of the RAMs
reg [THETA WIDTH-1:0] current_theta;

//index signals
wire [INDEX WIDTH-1:0] index;
reg [INDEX WIDTH-1:0] write index;

//combine individual octave, note, and harmonic indices into BRAM index
assign index = {octave index, note index, harmonic_ index};

always @* begin
if (reset) current theta = 0;
//initialize theta with initial theta wvalues
else if (!initialized) current theta = initial theta;

//otherwise, use incremented theta
else current theta = last theta + theta delta;
end

always @ (posedge clock) begin
last enable <= enable inj;

//write new theta value on next clock cycle
theta <= current theta;

//write index, is index from last clock cycle
write index <= index;

//handles initialization logic

if (reset) initialized <= 1'bO;

else if (!enable in && last enable) initialized <= 1'b1;
end

137

//TWO-PORT BRAM
//ALLOWS READING AND WRITING
wrbram # (
.LOGSIZE(INDEX_WIDTH),
.WIDTH(THETA_WIDTH)
)
mem zero (
.read addr (index),
.write addr (write index),
.clk(clock),
.din(current theta),
.dout (last_ theta),
.we (last enable && !reset)

)

endmodule

Module: timbre transformer
Description:

Applies the timbre effects (harmonic relative amplitudes and ADSR
envelope scaling)

for the various instruments to the tones. It hooks into multiple stages
in the

audio generator pipeline.

Parameters:
Defined in Audio Generator Module

Inputs:

clock - the clock pulse (27 MHz)

reset - sets module back to original state

sample increment - indicates that the envelope should move to the next
sample

—-AUDIO GENERATOR STAGE 2 SIGNALS-

enable in - signal to activate processing

instrument keys - indicates which keys are pressed

harmonic index - the harmonic index for the data going through the audio
generation pipeline

note index - the note index for the data going through the audio
generation pipeline

octave index - the octave index for the data going through the audio
generation pipeline

-AUDIO GENERATOR STAGE 4 SIGNALS-
data in - the sine data input

Outputs:
-AUDIO GENERATOR STAGE 5 SIGNALS-

138

enable out - indicates that tone data is being output (initiates active
period of
subsequent modules in the pipeline)
combined tone out - the combined data from all the instrument generators
tone outputs

Notes:
1. Timing and synchronization with pipeline is critical since this
module depends on
several signals from various stages of the pipeline to operate.

2. This module does not truncate the result of adding the instrument
tone data so the
width of the combined tone out signal is DATA WIDTH +
LOG_INSTRUMENTS.

module timbre transformer #(parameter
LOG_INSTRUMENTS=1,

DELTA WIDTH=10,
DATA WIDTH=18,
LOG_SAMPLES=8,

NUM PULSES=48000,
SCALE WIDTH=8,
PRECISION WIDTH=16,

LAST HARMONIC=3,
LOG_HARMONICS=2,
LOG_NOTES=4,
LOG_OCTAVES=3)

input wire clock,
input wire reset,
input wire sample increment,

input wire enable in,

input wire [(1<<LOG_ INSTRUMENTS)-1:0] instrument keys,
input wire [LOG HARMONICS-1:0] harmonic_ index,

input wire [LOG NOTES-1:0] note index,

input wire [LOG OCTAVES-1:0] octave index,

input wire [DATA WIDTH-1:0] data in,

139

output wire enable out,
output wire signed [DATA WIDTH+LOG INSTRUMENTS-1:0] combined tone out
)

SIGNALS-—————————————————————— - - —————————————— 7/

reg stage2 enable, stage3 enable, stage4 enable;

reg [LOG HARMONICS-1:0] stage2 harmonic index, stage3 harmonic index,
stage4 harmonic index;

reg [LOG _NOTES-1:0] stage2 note index, stage3 note index,
stage4 note index;

reg [LOG OCTAVES-1:0] stage2 octave index, stage3 octave index,
stage4 octave index;

//Instrument index parameters

parameter [LOG INSTRUMENTS-1:0] PIANO INDEX = O;
parameter [LOG INSTRUMENTS-1:0] VIOLIN INDEX = 1;
parameter [LOG INSTRUMENTS-1:0] WHISTLE INDEX = 2;
parameter [LOG INSTRUMENTS-1:0] CELLO INDEX = 3;
//get key press information for instruments based on their index
wire piano _key pressed = instrument keys[PIANO INDEX];

wire violin key pressed = instrument keys[VIOLIN INDEX];

wire whistle key pressed = instrument keys[WHISTLE INDEX];

wire cello key pressed = instrument keys[CELLO INDEX];

YVAREE S

//STAGE 1 - AUDIO GENERATOR PIPE STAGE 2
[/ KKk kkkkkkhkhkkhhkkhhkkhhkkhhkhhkhhkkhkkhkkkkkhhkhkhkkhkkhkkhkkkkkkk k%

wire [LOG_SAMPLES-1:0] piano_attack duration;
wire [DELTA WIDTH-1:0] piano_attack delta;

wire [LOG_SAMPLES-1:0] piano_decay duration;
wire [DELTA WIDTH-1:0] piano decay delta;

wire [DELTA WIDTH-1:0] piano_sustain delta;
wire [LOG_SAMPLES-1:0] piano_sustain factor;

wire [DELTA WIDTH-1:0] piano release delta;

piano_asdr props #(
.LOG_SAMPLES (LOG_SAMPLES) ,
.DELTA WIDTH (DELTA WIDTH)
)

piano _envelope params (

140

.attack duration(piano_ attack duration),
.attack delta(piano_attack delta),

.decay duration(piano_decay duration),
.decay delta(piano_decay delta),

.sustain delta(piano sustain delta),
.sustain factor (piano sustain factor),

.release delta(piano_release delta)

wire [LOG SAMPLES-1:0] violin attack duration;
wire [DELTA WIDTH-1:0] violin attack delta;

wire [LOG_SAMPLES-1:0] violin decay duration;
wire [DELTA WIDTH-1:0] violin decay delta;

wire [DELTA WIDTH-1:0] violin sustain delta;
wire [LOG_SAMPLES-1:0] violin sustain factor;

wire [DELTA WIDTH-1:0] violin release delta;

violin asdr props #(
.LOG_SAMPLES (LOG_SAMPLES) ,
. DELTA_WIDTH (DELTA_WIDTH)
)
violin envelope params (
.clock (clock),
.reset (reset),
.sample increment (sample increment),

.attack duration(violin attack duration),
.attack delta(violin attack delta),

.decay duration(violin decay duration),
.decay delta(violin decay delta),

.sustain delta(violin sustain delta),
.sustain factor(violin sustain factor),

.release delta(violin release delta)

wire [LOG_SAMPLES-1:0] whistle attack duration;
wire [DELTA WIDTH-1:0] whistle attack delta;

141

wire [LOG_SAMPLES-1:0] whistle decay duration;
wire [DELTA WIDTH-1:0] whistle decay delta;

wire [DELTA WIDTH-1:0] whistle sustain delta;
wire [LOG_SAMPLES-1:0] whistle sustain factor;

wire [DELTA WIDTH-1:0] whistle release delta;

whistle asdr props #(
.LOG_SAMPLES (LOG_SAMPLES) ,
.DELTA WIDTH (DELTA WIDTH)
)
whistle envelope params (
.attack duration(whistle attack duration),
.attack delta(whistle attack delta),

.decay duration(whistle decay duration),
.decay delta(whistle decay delta),

.sustain delta(whistle sustain delta),
.sustain factor(whistle sustain factor),

.release delta(whistle release delta)

wire [SCALE WIDTH-1:0] piano harmonic scale;

wire [LOG_HARMONICS-1:0] piano_ harmonic scale index;
wire piano_enable out;

wire signed [DATA WIDTH-1:0] piano tone data;

instrument_generator # (
.DELTA WIDTH(DELTA WIDTH),
.DATA WIDTH (DATA WIDTH),
.LOG_SAMPLES (LOG_SAMPLES) ,
.NUM PULSES (NUM_PULSES),
.SCALE WIDTH (SCALE WIDTH),
.PRECISION_WIDTH(PRECISION_WIDTH),

.LAST HARMONIC (LAST HARMONIC),
.LOG_HARMONICS (LOG_HARMONICS),
.LOG_NOTES (LOG_NOTES) ,
.LOG_OCTAVES (LOG_OCTAVES)

)

piano_generator (

.grabbed scale(grabbed scale),

142

.clock (clock),
.reset (reset),
.enable in(enable in),

.sample increment (sample increment),
.harmonic index (harmonic_ index),
.note index(note index),

.octave index(octave index),

.key pressed(piano key pressed),

.attack duration(piano_attack duration),
.attack delta(piano_attack delta),

.decay duration(piano_decay duration),
.decay delta(piano_decay delta),

.sustain delta(piano sustain delta),
.sustain factor (piano_sustain factor),

.release delta(piano release delta),

.harmonic scale(piano_harmonic scale),
.harmonic scale index(piano harmonic scale index),

.tone data in (data in),

.enable out(piano enable out),
.tone data out(piano tone data)
)3

piano _harmonic scale params #(
.SCALE WIDTH (SCALE WIDTH),
.LOG_HARMONICS (LOG_HARMONICS)

)
piano_harmonic scale paramsl (
.clock (clock),
.reset (reset),
.harmonic index(piano_harmonic scale index),

.harmonic scale(piano harmonic scale)

wire [SCALE WIDTH-1:0] violin harmonic_ scale;
wire [LOG_HARMONICS-1:0] violin harmonic scale index;

143

wire violin enable out;
wire signed [DATA WIDTH-1:0] violin tone data;

instrument generator #(
.DELTA WIDTH (DELTA WIDTH),
.DATA WIDTH (DATA WIDTH),
.LOG_SAMPLES (LOG_SAMPLES) ,
.NUM PULSES (NUM PULSES),
.SCALE WIDTH (SCALE WIDTH),
.PRECISION WIDTH(PRECISION WIDTH),

.LAST HARMONIC (LAST HARMONIC),
.LOG_HARMONICS (LOG_HARMONICS),
.LOG_NOTES (LOG_NOTES) ,
.LOG_OCTAVES (LOG_OCTAVES)

)

violin generator (
.clock (clock),
.reset (reset),
.enable in(enable in),

.sample increment (sample increment),
.harmonic index (harmonic index),
.note index(note index),

.octave index(octave index),

.key pressed(violin key pressed),

.attack duration(violin attack duration),
.attack delta(violin attack delta),

.decay duration(violin decay duration),
.decay delta(violin decay delta),

.sustain delta(violin sustain delta),
.sustain factor(violin sustain factor),

.release delta(violin release delta),

.harmonic scale(violin harmonic scale),
.harmonic scale index(violin harmonic scale index),

.tone data in (data in),

.enable out(violin enable out),
.tone data out(violin tone data)
) s

violin harmonic scale params # (
.SCALE WIDTH (SCALE WIDTH),
.LOG_HARMONICS (LOG_HARMONICS)
)

violin harmonic_ scale paramsl (

144

.clock (clock),
.reset (reset),

.harmonic index(violin harmonic scale index),

.harmonic scale(violin harmonic_scale)

wire [SCALE WIDTH-1:0] whistle harmonic_ scale;

wire [LOG_HARMONICS-1:0] whistle harmonic scale index;
wire whistle enable out;

wire signed [DATA WIDTH-1:0] whistle tone data;

instrument generator #(
.DELTA WIDTH (DELTA WIDTH),
.DATA WIDTH (DATA WIDTH),
.LOG_SAMPLES (LOG_SAMPLES) ,
.NUM PULSES (NUM PULSES),
.SCALE WIDTH (SCALE WIDTH),
.PRECISION WIDTH(PRECISION WIDTH),

.LAST HARMONIC (LAST HARMONIC),
.LOG_ HARMONICS (LOG_HARMONICS),
.LOG_NOTES (LOG_NOTES) ,
.LOG_OCTAVES (LOG_OCTAVES)

)

whistle generator (
.clock (clock),
.reset (reset),
.enable in(enable in),
.sample increment (sample increment),
.harmonic index (harmonic index),
.note index(note index),
.octave index(octave index),

.key pressed(whistle key pressed),

.attack duration(whistle attack duration),
.attack delta(whistle attack delta),

.decay duration(whistle decay duration),
.decay delta(whistle decay delta),

.sustain delta(whistle sustain delta),
.sustain factor (whistle sustain factor),

.release delta(whistle release delta),

145

.harmonic scale(whistle harmonic scale),
.harmonic scale index(whistle harmonic scale index),

.tone data in (data in),

.enable out (whistle enable out),
.tone data out(whistle tone data)
)

whistle harmonic scale params #(
.SCALE WIDTH (SCALE WIDTH),
.LOG_HARMONICS (LOG_HARMONICS)

)

whistle harmonic scale paramsl (
.clock(clock),
.reset (reset),

.harmonic index (whistle harmonic scale index),

.harmonic scale(whistle harmonic scale)

wire [SCALE WIDTH-1:0] cello harmonic_ scale;

wire [LOG_HARMONICS-1:0] cello harmonic scale index;
wire cello enable out;

wire signed [DATA WIDTH-1:0] cello tone data;

instrument_generator #(
.DELTA WIDTH (DELTA WIDTH),
.DATA WIDTH (DATA WIDTH),
.LOG_SAMPLES (LOG_SAMPLES) ,
.NUM_PULSES (NUM_PULSES) ,
.SCALE WIDTH (SCALE WIDTH),
.PRECISION WIDTH(PRECISION WIDTH),

.LAST HARMONIC (LAST HARMONIC),
.LOG_HARMONICS (LOG_HARMONICS),
.LOG_NOTES (LOG_NOTES) ,
.LOG_OCTAVES (LOG_OCTAVES)

)

cello generator (
.clock (clock),
.reset (reset),
.enable in(enable in),

.sample increment (sample increment),

.harmonic index (harmonic_ index),

146

.note index(note index),
.octave index(octave index),

.key pressed(cello key pressed),

.attack duration(violin attack duration),
.attack delta(violin attack delta),

.decay duration(violin decay duration),
.decay delta(violin decay delta),

.sustain delta(violin sustain delta),
.sustain factor(violin sustain factor),

.release delta(violin release delta),

.harmonic scale(cello harmonic_ scale),
.harmonic scale index(cello harmonic scale index),

.tone data in (data in),

.enable out(cello enable out),
.tone data out(cello tone data)
) s

cello harmonic scale params # (
.SCALE WIDTH (SCALE WIDTH),
.LOG_HARMONICS (LOG_HARMONICS)
)

cello harmonic_scale paramsl (
.clock (clock),
.reset (reset),

.harmonic index(cello harmonic scale index),

.harmonic scale(cello harmonic scale)
) s

YVAREE S

//STAGE 4 - AUDIO GENERATOR STAGE 5

VAR EEE]

//combined enable out and tone signals (all instruments enable and tone
data signals should coincide)

assign enable out = (violin enable out && piano enable out &&
whistle enable out && cello enable out);
assign combined tone out = (violin tone data + piano_ tone data

+whistle tone data + cello tone data);

endmodule

147

Module: instrument generator
Description:

Generic module which connects with a harmonic parameters and ADSR
parameters module to

apply the timbre effects for a particular instrument.

Parameters:
Defined in Audio Generator Module

Inputs:

clock - the clock pulse (27 MHz)

reset - sets module back to original state

sample increment - indicates that the envelope should move to the next
sample

—-AUDIO GENERATOR STAGE 2 SIGNALS-

enable in - signal to activate processing

key pressed - indicates whether the key specified by the indices is
pressed

harmonic_index - the harmonic index for the data going through the audio
generation pipeline

note index - the note index for the data going through the audio
generation pipeline

octave index - the octave index for the data going through the audio
generation pipeline

—INSTRUMENT ADSR PROPERTIES-
attack duration - the length in samples of the attack period of the ADSR
envelope generator
attack delta - the change in amplitude of the signal per sample for the
attack period
(first SCALE WIDTH are integral part, rest are fractional)

decay duration - the length in samples of the decay period of the ADSR
envelope generator
decay delta - the change in amplitude of the signal per sample for the
decay period
(first SCALE WIDTH are integral part, rest are fractional)

sustain delta - the change in amplitude of the signal per sample as
mediated by the sustain factor
for the sustain period (first SCALE WIDTH bits are integral part,
the rest are fractional)
sustain factor - the number of samples that passes before the
sustain delta is
applied to the signal again (allows for smaller decreases in
amplitude over time)

release delta - the change in amplitude of the signal per sample for the
release period

148

—-HARMONIC SCALE INPUTS (AUDIO GENERATOR STAGE 4)-
harmonic scale - the scale factor (relative amplitude) for the
harmonic scale index output on the
last clock cycle

Outputs:
enable out - indicates that the Tone Selector is outputting index data
harmonic_index - the harmonic index
note index - the note index
octave index - the octave index

Notes:
1. Make sure MAX COUNT is within the range of numbers possible given
COUNT WIDTH,
otherwise, there will never be overflow.

module instrument generator #(parameter
DELTA WIDTH=10,
DATA WIDTH=18,
LOG_SAMPLES=8,
NUM PULSES=48000,
SCALE WIDTH=8,
PRECISION WIDTH=16,

LAST HARMONIC=3,
LOG_HARMONICS=2,
LOG_NOTES=4,
LOG_OCTAVES=3)

input wire clock,

input wire reset,

input wire enable in,

input wire sample increment,

input wire [LOG _HARMONICS-1:0] harmonic_ index,
input wire [LOG NOTES-1:0] note index,

input wire [LOG OCTAVES-1:0] octave index,

input wire key pressed,

//INSTRUMENT ADSR PROPERTIES
input wire [LOG_ SAMPLES-1:0] attack duration,

149

input wire signed [DELTA WIDTH-1:0] attack delta,

input wire [LOG SAMPLES-1:0] decay duration,
input wire signed [DELTA WIDTH-1:0] decay delta,

input wire signed [DELTA WIDTH-1:0] sustain delta,
input wire [LOG SAMPLES-1:0] sustain factor,

input wire signed [DELTA WIDTH-1:0] release delta,
//HARMONIC SCALE FACTOR

input wire [SCALE WIDTH-1:0] harmonic scale,

output wire [LOG HARMONICS-1:0] harmonic scale index,

//SINE DATA
input wire [DATA WIDTH-1:0] tone data in,

output reg enable out,
output reg signed [DATA WIDTH-1:0] tone data out

parameter LOG _KEYS = LOG_OCTAVES + LOG NOTES;

parameter NOTE INFO WIDTH = LOG_SAMPLES + PRECISION WIDTH + DELTA WIDTH +

reg stage2 enable, stage3 enable, stage4 enable;

reg [LOG HARMONICS-1:0] stage2 harmonic index, stage3 harmonic index,
stage4 harmonic index;

reg [LOG _NOTES-1:0] stage2 note index, stage3 note index,
stage4 note index;

reg [LOG OCTAVES-1:0] stage2 octave index, stage3 octave index,
stage4 octave index;

VAR EE S

//STAGE 1 - AUDIO GENERATOR STAGE 2

VAR EEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]

wire [NOTE INFO WIDTH-1:0] read note info, write note info;
//assign read note info [NOTE INFO WIDTH-1:36] = O;

wire note info we;

reg [LOG _KEYS-1:0] write key index;

reg [LOG _KEYS-1:0] read addr=0;
reg [LOG KEYS-1:0] write addr=0;

always @* begin
read addr[LOG KEYS-1:0] = {octave index, note_ index};
write addr[LOG KEYS-1:0] = write key index;

end

//Stores note ADSR state info
wrbram # (

150

.LOGSIZE (LOG_KEYS),
.WIDTH (NOTE INFO WIDTH))
note state info (
.read addr(read addr),
.write addr(write addr),
.clk(clock),
.din(write note info),
.dout (read note info),
.we (note_info we)
) s

reg adsr initialized;
wire [SCALE WIDTH-1:0] adsr_ scale;

//ATTACHMENTS BETWEEN NOTE STATE INFO MODULE AND ASDR SCALE GENERATOR
wire adsr_ enout;

wire [1:0] last adsr state;

wire [LOG SAMPLES-1:0] last adsr count;

wire [DELTA WIDTH+PRECISION WIDTH-1:0] last adsr factor;

wire [1:0] adsr state;
wire [LOG SAMPLES-1:0] adsr count;
wire [DELTA WIDTH+PRECISION WIDTH-1:0] adsr_ factor;

assign write note info = {adsr_ state, adsr count, adsr factor};

assign {last adsr state, last adsr count, last adsr factor} =
(adsr_initialized ? read note info : 0);

assign note info we = adsr enout;

//passed along enable signals and indices to the next stage2 enable
//last clock cycles read index, is this clock cycles write index
always @ (posedge clock) begin

if (reset) adsr initialized <= 1'bO;

else if(stage2 enable && !enable in) adsr initialized <= 1'bi;

stage2 enable <= enable in;
stage2 note index <= note index;

stage2 harmonic index <= harmonic_index;
stage2 octave index <= octave index;

write key index <= {stage2 octave index, stage2 note index};

end

YVAREEEEEEEEEEEEEEEEEEEEEEEEEEEREEEREEEEEE R R R R R R R R R R R R R R SRS S

//STAGE 2 - AUDIO GENERATOR STAGE 3

VAR EEE]

adsr_scale generator #(
//parameters

151

.DELTA WIDTH (DELTA WIDTH),
.NUM_PULSES (NUM_PULSES) ,
.SCALE_WIDTH (SCALE WIDTH),
.LOG_SAMPLES (LOG_SAMPLES) ,
.PRECISION WIDTH (PRECISION WIDTH),

.LAST HARMONIC (LAST HARMONIC) ,
.LOG_HARMONICS (LOG_HARMONICS) ,
.LOG_NOTES (LOG_NOTES) ,
.LOG_OCTAVES (LOG_OCTAVES)

)

envelope generator (
//inputs
.clock (clock),
.reset (reset),
.enable (stage2 enable),

.sample increment (sample increment),

.note index(stage2 note index),
.harmonic index(stage2 harmonic index),
.octave index(stage2 octave index),
.note pressed(key pressed),

.last state(last adsr state),
.last count(last adsr count),
.last factor(last adsr factor),

.attack duration(attack duration),
.attack delta(attack delta),

.decay duration(decay duration),
.decay delta(decay delta),

.sustain delta(sustain delta),
.sustain factor (sustain factor),

.release delta(release delta),

//outputs

.state (adsr_state),

.count (adsr_ count),

.factor (adsr_factor),

.write state info(adsr_ enout),
.scale (adsr_ scale)

reg [SCALE WIDTH-1:0] scale;
wire [SCALE WIDTH-1:0] scale async;

assign harmonic scale index = stage2 harmonic_ index;

152

always @ (posedge clock) begin
stage3 enable <= stage2 enable;
stage3 note index <= stage2 note index;
stage3 harmonic index <= stage2 harmonic index;
stage3 octave index <= stage2 octave index;

//synchronize harmonic scale generator output
scale <= scale async;
end

YVAREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEE SRR R e R R R R R R R R R R SRS S

//STAGE 3 - AUDIO GENERATOR STAGE 4

VAR EEE]

positive scaler #(
//parameters
.DATA WIDTH(SCALE WIDTH),
.SCALE_WIDTH(SCALE_WIDTH)
)
harmonic scale generator (
//inputs
.clock (clock),
.reset (reset),
.enable (stage3 enable),
.data (harmonic_scale),
.factor (adsr_scale),

//outputs
.product (scale_ async)
) s

wire [DATA WIDTH-1:0] scaled tone data async;

always @(posedge clock) begin
stage4 enable <= stage3 enable;
stage4 note index <= stage3 note index;
stage4 harmonic index <= stage3 harmonic index;
stage4 octave index <= stage3 octave index;

end

VAR EEE

//STAGE 4 - AUDIO GENERATOR STAGE 5

YVAREEE RS

scaler #(
//parameters
.DATA WIDTH(DATA WIDTH),
.SCALE WIDTH (SCALE WIDTH)
)
note scaler (
//inputs
.clock (clock),
.reset (reset),

153

.enable (stage4 enable),
.data(tone data in),
.factor (scale),

//outputs
.product (scaled tone data async)
)

always @ (posedge clock) begin
tone data out <= scaled tone data async;
enable out <= stage4 enable;

end

reg stage3 key pressed;

always @(posedge clock) begin
stage3 key pressed <= key pressed;

end

sample filter #(
//parameters
.DATA WIDTH(19)
)
scale grabber (
//inputs
.clock (clock),
.reset (reset),
.enable(stage3 enable && (stage3 harmonic index == 0) &&
(stage3 note index == 0) && (stage3 octave index == 3)),
.data({stage3 key pressed, adsr state, adsr scale, adsr count}),
//.sample index (sample index),
//.index (note_ index out),

//outputs
.data out(grabbed scale)

endmodule

module adsr scale generator #(parameter
LOG SAMPLES=8,
NUM_PULSES=48000,
DELTA WIDTH=10,
SCALE WIDTH=8,

154

PRECISION WIDTH=8,

LAST HARMONIC=0,
LOG HARMONICS=2,
LOG_NOTES=4,
LOG_OCTAVES=3)

//STANDARD PIPE SIGNALS
input wire clock,
input wire reset,
input wire enable,

input wire sample increment,

//NOTE INFORMATION

input wire [LOG_HARMONICS-1:0] harmonic_ index,
input wire [LOG NOTES-1:0] note index,

input wire [LOG OCTAVES-1:0] octave index,
input wire note pressed,

//STATE INFORMATION

input wire [1:0] last state,

input wire [LOG SAMPLES-1:0] last count,

input wire [DELTA WIDTH+PRECISION WIDTH-1:0] last factor,

//INSTRUMENT ADSR PROPERTIES
input wire [LOG SAMPLES-1:0] attack duration,
input wire signed [DELTA WIDTH-1:0] attack delta,

input wire [LOG_SAMPLES-1:0] decay duration,
input wire signed [DELTA WIDTH-1:0] decay delta,

input wire signed [DELTA WIDTH-1:0] sustain delta,
input wire [LOG_SAMPLES-1:0] sustain factor,

input wire signed [DELTA WIDTH-1:0] release delta,

//0UTPUT STATE INFORMATION

output reg [1:0] state,

output reg [LOG SAMPLES-1:0] count,

output reg [DELTA WIDTH+PRECISION WIDTH-1:0] factor,
output reg write state info,

output wire [SCALE WIDTH-1:0] scale

parameter [LOG HARMONICS-1:0] FUNDAMENTAL = O;

//ADSR State Parameters
parameter S RELEASE = O;
parameter S ATTACK 1;
parameter S DECAY = 2;
parameter S SUSTAIN 3

’

155

reg last enable, next sample;
reg [1:0] next state;

//0nly update on the first harmonic, the rest will have the same ADSR
information
wire enable adsr = (enable && (harmonic index == 0));

parameter FACTOR WIDTH = DELTA WIDTH + PRECISION WIDTH;

always @* begin
if (reset) begin
next state = S RELEASE;
end
else begin
if (enable adsr) begin
if (!note pressed) begin
next state = S RELEASE;
end
else begin
case (last state)
S _ATTACK
if ((last _count == attack duration)
| | last factor[FACTOR WIDTH-1]) next state = S DECAY;
else next state
S DECAY : next state
decay duration) ? S SUSTAIN : S DECAY) ;
S SUSTAIN: next state
S _RELEASE: next state

S_ATTACK;
((last_count ==

S SUSTAIN;
(note pressed ?

S ATTACK : S RELEASE);
default: next state = S RELEASE;
endcase
end
end
end
end

reg [DELTA WIDTH-1:0] delta;

always @* begin

case (last state)
S ATTACK : delta
S DECAY : delta
S SUSTAIN: delta
S RELEASE: delta
default: delta =

endcase

attack delta;

decay delta;

((last _count == 0) ? sustain delta : 0);
release delta;

o

end

high extractor #(
.DATA WIDTH (FACTOR WIDTH),
.LEFT_OFFSET (0) ,

156

.EXTRACT WIDTH(SCALE WIDTH)
)
scale extractor (
.data (factor),
.extraction(scale)
) s

wire [FACTOR WIDTH-1:0] factor_result;

//update teh factor values based on the delta (updates are fractional
since the are multiple
//ready pulses between samples)
interpolator #(
.DELTA WIDTH(DELTA WIDTH),
.LOG_SAMPLES (LOG_SAMPLES) ,
.NUM_PULSES (NUM_PULSES) ,
.PRECISION WIDTH(PRECISION WIDTH)
)
interpolatorl (
.data_in(last factor),
.delta(delta),
.data out (factor result)

always @(posedge clock) begin

if (reset) begin
state <= S RELEASE;
write state info <= 1'bO;
factor <= 0;
count <= 0;
last enable <= 0;

end

else begin
last enable <= enable;

//next sample needs to be set for an entire active cycle
(until negedge enable)

if (sample increment) next sample <= 1'bil;

else if (!enable && last enable) next sample <= 1'bO;

//write state info when enabled
write state info <= enable adsr;
if (enable adsr) begin
if (factor result[FACTOR WIDTH-1]) factor <=

(1<<(FACTOR_WIDTH—1));
else factor <= factor result;

157

state <= next state;
//SET 'count' value
if (last state != next state) begin
count <= 0;
end
else begin
//only change count, when the next sample signal
is received
if (next sample) begin
if (last state == S SUSTAIN) begin
if (last count == sustain factor)
count <= 0;
else count <= last count + 1;
end
else begin
count <= last count + 1;
end
end
else begin
count <= last count;

end
end
end
else begin
state <= S RELEASE;
count <= 0;
end
end
end
endmodule

audio_gen data.v

Module: tone theta params
Description:

Outputs the per ready pulse change in theta (aka frequency) and the
initial theta

value (phase) for a given tone (octave, note, harmonic).

Parameters:
Defined in Audio Generator Module

Inputs:

158

clock - the clock pulse (27 MHz)
harmonic index - the harmonic index
note index - the note index

octave index - the octave index

Outputs:

theta delta - the change in theta for each ready pulse (corresponds to
frequency)

initial theta - the initial value for theta when a tone begins
(corresponds to phase)

Notes:
1. The initial theta is the same for all instruments under the current
scheme.
These phases were derived from violin signals, so they may not be
compatible for
other instruments.

module tone theta params # (parameter
THETA WIDTH=16,

LOG_HARMONICS=2,
LOG_NOTES=4,
LOG OCTAVES=3)

input wire clock,
input wire reset,

input wire [LOG HARMONICS-1:0] harmonic index,
input wire [LOG NOTES-1:0] note index,

input wire [LOG _OCTAVES-1:0] octave index,
output reg [THETA WIDTH-1:0] theta delta,
output reg [THETA WIDTH-1:0] initial theta

//note name parameters

parameter [LOG NOTES-1:0] C = O;
parameter [LOG NOTES-1:0] Cs 1;
parameter [LOG NOTES-1:0] D = 2;
parameter [LOG NOTES-1:0] Ds 3;
parameter [LOG NOTES-1:0] E = 4;
parameter [LOG NOTES-1:0] F = 5;
parameter [LOG NOTES-1:0] Fs 6;
parameter [LOG NOTES-1:0] G = 7;
parameter [LOG NOTES-1:0] Gs 8;
parameter [LOG NOTES-1:0] A = 9;
parameter [LOG NOTES-1:0] As 10;
parameter [LOG NOTES-1:0] B = 11;

//harmonic name parameters

159

octave

parameter
parameter
parameter
parameter
parameter

//specifies the octave index which is represented by the constants below
parameter [LOG OCTAVES-1:0] INITIAL OCTAVE INDEX = 7;

//constant is divided by 27octave attentuation to get the theta delta
//corresponding to the fundamental frequency for a particular note and

wire [LOG_OCTAVES-1:0] octave attentuation =

octave index;

//multiply the fundamental by this number to give the harmonic's theta

//assign theta delta (frequency) for a given note, octave, and

[LOG_HARMONICS-1:0] FND = O

[LOG_HARMONICS-1:0]

[LOG HARMONICS-1:0] THIRD = 2;
[LOG_HARMONICS-1:0] FOURTH = 3;
[LOG_HARMONICS-1:0] FIFTH = 4;

SECOND = 1;

’

INITIAL OCTAVE INDEX -

harmonic index + 1;

delta (frequency)

wire [LOG HARMONICS:0] harmonic number =

reg [THETA WIDTH-1:0] base delta;

always @* begin

case (note index)
C: base delta = 16'd2857;
Cs: base delta = 16'd3027;
D: base delta = 16'd3207;
Ds: base delta = 16'd3398;
E: base delta = 16'd3600;
F: base delta = 16'd3814;
Fs: base delta = 16'd4041;
G: base delta = 16'd4281;
Gs: base delta = 16'd4536;
A: base delta = 16'd4806;
As: base delta = 16'd5091;
B: base delta = 16'd5394;
default: base delta = 16'd0;
endcase
end
always @ (posedge clock) begin
harmonic

theta delta <=

harmonic number) ;

//assign initial theta (phase) for each harmonic

case (harmonic_ index)

<=
<=
<=
<=

((base _delta >> octave attentuation)

16'd9174;

16'd46992;
16'd26623;
16'd59455;

FND: initial_theta <= 16'd32982;
SECOND: initial theta
THIRD: initial theta
FOURTH: initial theta
FIFTH: initial theta
default: initial theta <=

160

16

'do;

*

endcase
end
endmodule

Modules: violin harmonic scale params, piano harmonic scale params,
cello harmonic scale params, whistle harmonic scale params
Description:
Outputs the scale factor which corresponds to the relative amplitude of

the

input harmonic index
Parameters:

Defined in Audio Generator Module
Inputs:

clock - the clock pulse (27 MHz)

reset - the reset signal

harmonic index - the harmonic index
Outputs:

harmonic_scale - the scale factor for the harmonic
_______ */

module violin harmonic scale params # (parameter
SCALE WIDTH=8,
LOG_HARMONICS=3)

input wire clock,
input wire reset,
input wire [LOG HARMONICS-1:0] harmonic index,

output reg [SCALE WIDTH-1:0] harmonic_ scale

parameter [LOG_HARMONICS-1:0] FND = O;
parameter [LOG HARMONICS-1:0] SECOND = 1;
parameter [LOG HARMONICS-1:0] THIRD = 2;
parameter [LOG_HARMONICS-1:0] FOURTH = 3;
parameter [LOG_HARMONICS-1:0] FIFTH = 4;

always @ (posedge clock) begin
case (harmonic_ index)
FND: harmonic scale <= 8'di128;
SECOND: harmonic_ scale <= 8'd39;
THIRD: harmonic scale <= 8'di18;
FOURTH: harmonic scale <= 8'd69;
FIFTH: harmonic_scale <= 8'd53;
default: harmonic scale <= 8'd0;

161l

endcase
end

endmodule

module piano harmonic scale params # (parameter
SCALE WIDTH=8,
LOG_HARMONICS=3)

input wire clock,
input wire reset,
input wire [LOG HARMONICS-1:0] harmonic_ index,

output reg [SCALE WIDTH-1:0] harmonic_ scale

parameter [LOG HARMONICS-1:0] FND = O;
parameter [LOG HARMONICS-1:0] SECOND = 1;
parameter [LOG_HARMONICS-1:0] THIRD = 2;
parameter [LOG_HARMONICS-1:0] FOURTH = 3;

always @ (posedge clock) begin
case (harmonic_ index)
FND: harmonic scale <= 8'di128;
SECOND: harmonic scale <= 8'de68;
THIRD: harmonic scale <= 8'd23;
FOURTH: harmonic scale <= 8'd22;
default: harmonic scale <= 8'd0;
endcase
end

endmodule

module whistle harmonic scale params #(parameter
SCALE WIDTH=8,
LOG_HARMONICS=3)

input wire clock,
input wire reset,
input wire [LOG HARMONICS-1:0] harmonic_ index,

output reg [SCALE WIDTH-1:0] harmonic_ scale
parameter [LOG HARMONICS-1:0] FND = O;

always @ (posedge clock) begin
case (harmonic index)
FND: harmonic scale <= 8'd128;
default: harmonic scale <= 8'd0;
endcase
end

162

endmodule

module cello harmonic scale params #(parameter
SCALE WIDTH=8,
LOG_HARMONICS=3)

input wire clock,
input wire reset,
input wire [LOG _HARMONICS-1:0] harmonic_ index,

output reg [SCALE WIDTH-1:0] harmonic scale

parameter [LOG HARMONICS-1:0] FND = O;

parameter [LOG_HARMONICS-1:0] SECOND = 1;
parameter [LOG HARMONICS-1:0] THIRD = 2;
parameter [LOG HARMONICS-1:0] FOURTH = 3;
parameter [LOG_HARMONICS-1:0] FIFTH = 4;

always @(posedge clock) begin
case (harmonic_ index)
FND: harmonic_scale <= 8'd49;
SECOND: harmonic scale <= 8'di107;
THIRD: harmonic scale <= 8'di128;
FOURTH: harmonic scale <= 8'di14;

FIFTH: harmonic scale <= 8'd40;
default: harmonic scale <= 8'd0;
endcase
end
endmodule

Modules: violin adsr props, piano_adsr props, whistle adsr props
Description:
The change in scale factor with 2 fractional bits per sample for each
ADSR stage. Also outputs the duration of the finite stages.

Parameters:
Defined in Audio Generator Module

Inputs:
//violin only
clock - the clock pulse (27 MHz)
reset - the reset signal

sample increment - pulse indicating to move to next sample

Outputs:

163

phase

attack duration - the length in samples of the attack phase
attack delta - the change in amplitude per sample during the attack phase

decay duration - the length in samples of the attack phase
decay delta - the change in amplitude per sample during the decay phase

sustain delta - the change in amplitude per sample during the sustain
(nonconstant for wviolin)

sustain factor - how often (in samples) to use the sustain delta, allows
for longer sustains

release delta - the change in amplitude per sample during the release

module piano_asdr props #(parameter

LOG SAMPLES=8,
DELTA WIDTH=10)

//INSTRUMENT ADSR PROPERTIES
output wire [LOG SAMPLES-1:0] attack duration,
output wire signed [DELTA WIDTH-1:0] attack delta,

output wire [LOG SAMPLES-1:0] decay duration,
output wire signed [DELTA WIDTH-1:0] decay delta,

output wire signed [DELTA WIDTH-1:0] sustain delta,
output wire [LOG SAMPLES-1:0] sustain factor,

output wire signed [DELTA WIDTH-1:0] release delta

assign attack duration = 8;
assign attack delta = 64;

assign decay delta = -5;

assign decay duration = 39;
assign sustain delta = -1;
assign sustain factor = 2;
assign release delta = -2;

endmodule

module violin asdr props # (parameter

LOG_SAMPLES=8,
LOG_NUM TRACKS=1,
DELTA WIDTH=10)

input wire clock,

input wire reset,
input wire sample increment,

lo4

//INSTRUMENT ADSR PROPERTIES
output wire [LOG SAMPLES-1:0] attack duration,
output wire signed [DELTA WIDTH-1:0] attack delta,

output wire [LOG SAMPLES-1:0] decay duration,
output wire signed [DELTA WIDTH-1:0] decay delta,

output wire signed [DELTA WIDTH-1:0] sustain delta,
output wire [LOG SAMPLES-1:0] sustain factor,

output wire signed [DELTA WIDTH-1:0] release delta

wire reverse;
wire [LOG_SAMPLES-1:0] sample count;

wire signed [DELTA WIDTH-1:0] delta offset, delta flux;

overflow counter #(
.COUNT WIDTH(LOG_ SAMPLES) ,
.MAX COUNT (31))

reverser (
.clock (clock),
.increment (sample increment),
.restart (reset),

.count(sample_count),
.overflow (reverse)

)

violin flux #(
.LOG_SAMPLES (LOG_SAMPLES) ,
.DELTA_WIDTH(DELTA_WIDTH))

vE (
.sample count (sample count),
.delta flux(delta flux)

) s
assign attack duration = 18;
assign decay duration = O;
assign sustain factor = 2;
assign attack delta = 20;
assign decay delta = O0;
assign sustain delta = delta flux;
assign release delta = -54;

endmodule

module whistle asdr props #(parameter
LOG_SAMPLES=8,
DELTA WIDTH=10)

165

//INSTRUMENT ADSR PROPERTIES
output wire [LOG SAMPLES-1:0] attack duration,
output wire signed [DELTA WIDTH-1:0] attack delta,

output wire [LOG_SAMPLES-1:0] decay duration,
output wire signed [DELTA WIDTH-1:0] decay delta,

output wire signed [DELTA WIDTH-1:0] sustain delta,
output wire [LOG SAMPLES-1:0] sustain factor,

output wire signed [DELTA WIDTH-1:0] release delta

assign attack duration = 38;
assign attack delta = 13;

assign decay delta = -1;

assign decay duration = 5;

assign sustain delta = O;

assign sustain factor = 0;

assign release delta = -18;
endmodule

//ROM containing the notes for Mary Had A Little Lamb
module little lamb sheet (
input wire [3:0] index,
output reg signed [15:0] beat info
) s
always @ (index)
case (index)
/7 16'bXX EE DD CC BB AA GG FF
4'do: beat info = 16'b00_00 00 00 00 00 11 00;
4'dl: beat info = 16'b10 11 00 00 00 00 00 00;
4'd2: beat info = 16'b00_00 00 00 00 01 00 00;
4'd3: beat info = 16'b00 00 00 00 01 00 00 00;
4'd4: beat info = 16'b00 00 00 01 00 00 00 00;
4'd5: beat info = 16'b00_00 00 01 00 00 00 00;
4'd6: beat info = 16'b00_00 00 10 00 00 00 00;
4'd7: Dbeat info 16'b10 00 00 00 00 00 00 00;
4'd8: Dbeat info = 16'b00_00 00 00 01 00 00 00;
4'd9: beat info = 16'b00_00 00 00 01 00 00 00;
4'd10: beat info = 16'b00 00 00 00 10 00 00 00;
4'd11: beat info = 16'b00 00 00 00 00 00 00 00;
4'd12: beat info = 16'b00_00 00 01 00 00 00 00;
4'd13: beat info = 16'b00_01 00 00 00 00 00 00;
4'd14: beat info = 16'b00 10 00 00 00 00 00 00;
4'd15: beat info = 16'b11 00 00 00 00 00 00 00;
default: beat info = 16'b00 00 00 00 00 00 00 00;
endcase
endmodule

166

//defines simple sinusoidal oscillation during the sustain phase for the
violin and cello
module violin flux # (parameter

LOG_SAMPLES=8,

DELTA WIDTH=10)

input wire [7:0] sample count,
output reg signed [DELTA WIDTH-1:0] delta flux

wire [4:0] index = sample count[4:0];
always @ (index)
case (index)

0: delta flux = -25;
1: delta flux = -25;
2: delta flux = -23;
3: delta flux = -21;
4: delta flux = -18;
5: delta flux = -14;
6: delta flux = -10;
7: delta flux = -5;
8: delta flux = 0;

9: delta flux = 5;

10: delta flux = 10;
11: delta flux = 14;
12: delta flux = 18;
13: delta flux = 21;
14: delta flux = 23;
15: delta flux = 25;
16: delta flux = 25;
17: delta flux = 25;
18: delta flux = 23;
19: delta flux = 21;
20: delta flux = 18;
21: delta flux = 14;
22: delta flux = 10;
23: delta flux = 5;

24 : delta flux = 0;

25: delta flux = -5;
26: delta flux = -10;
27: delta flux = -14;
28: delta flux = -18;
29: delta flux = -21;
30: delta flux = -23;
31: delta flux = -25;

endcase

endmodule

audio_gen player.v

Module: key state memoryX

167

Description:

Stores the key press states for all the keys and manages updates from the

player modules.

Parameters:

Defined in Audio Generator Module

Inputs:

See below

Outputs:

See below

module key state memoryX # (parameter

LOG_INSTRUMENTS=1,
LOG_NOTES=4,
LOG_OCTAVES=3)

input wire clock,
input wire reset,

//read enable indicates when the module is being read, so it can tell the

players to

//cease writing

input wire read enable,

//read indices specifying the key whose key press state is needed
input wire [LOG NOTES-1:0] read note index,

input wire [LOG OCTAVES-1:0] read octave index,

//inputs from player moudles

input wire write enable,

input wire [LOG NOTES-1:0] write note index,

input wire [LOG OCTAVES-1:0] write octave index,

input wire [LOG INSTRUMENTS-1:0] write instrument index,
input wire write key pressed,

//indicates that the module is writable
output wire writable,

//the keys being pressed by the instruments (for the key specified by the

read indices)

)

output wire [(1<<LOG INSTRUMENTS)-1:0] keys pressed out
localparam NUM INSTRUMENTS = (1<<LOG_ INSTRUMENTS) ;
localparam INDEX WIDTH = LOG_OCTAVES+LOG NOTES;

//index signals

wire [INDEX WIDTH-1:0] index, read index, write index;
reg [INDEX WIDTH-1:0] delayed write index;

168

reg delayed key pressed;
reg [LOG _INSTRUMENTS-1:0] delayed instrument index;

assign write index = {write octave index, write note index};
assign read index = {read octave index, read note index};
assign index = (read enable ? read index : write index);

wire [(1<<LOG_INSTRUMENTS)-1:0] mem keys pressed;
wire [(1<<LOG_ INSTRUMENTS)-1:0] mem keys in;

reg mem write enable;

//internal RAM which stores the key press states
wrbram # (
.LOGSIZE (INDEX WIDTH),
.WIDTH (NUM_INSTRUMENTS)
)
key mem (
.read addr (index),
.write addr (delayed write index),
.clk(clock),
.din (mem keys in),
.dout (mem keys pressed),
.we (mem write enable)
) s

reg initialized, last read enable, writable out, read started;

reg read memory;
wire write memory = !read memory;

localparam [(1<<LOG_ INSTRUMENTS)-1:0] ZEROS = O;
parameter [(1<<LOG_INSTRUMENTS)-1:0] ONES = ~O0O;

wire neg delayed key pressed = ~delayed key pressed;

//this is all ones with a zero at the instrument index
wire [(1<<LOG_INSTRUMENTS)-1:0] mask = (ONES A
(1<<delayed instrument index)) ;

//zero out only the key press info at the instrument index
wire [(1<<LOG_INSTRUMENTS)-1:0] key press mask = (keys pressed out
mask) ;

//put in new key press info

wire [(1<<LOG_INSTRUMENTS)-1:0] keys in = (key press mask |
(delayed key pressed<<delayed instrument index)) ;

169

assign keys pressed out = ((initialized && !reset) ? mem keys pressed
0);

assign writable = (writable out && !read enable);

//if not initialized, erase data by setting keys in to zero and writing
during the first read cycle
assign mem keys in = ((reset || !initialized) ? 0 : keys in);

always @ (posedge clock) begin
delayed write index <= index;
delayed key pressed <= write key pressed;
delayed instrument index <= write instrument index;
last read enable <= read enable;

if (reset) begin
initialized <= 1'bO;
writable out <= 1'bO;
mem write enable <= 1'b0;
read started <= 1'b0;

end

else begin
if (read enable) begin

writable out <= 1'b0;

//if not initialized, erase all data
if (!initialized) begin
mem write enable <= 1'bl;
end
else mem write enable <= 1'b0;

if (!last read enable) read started <= 1'bi1;
end
else begin

mem write enable <= write enable;

read started <= 1'b0;

//finished a full read, so it is initialized

if (last read enable && read started) begin
initialized <= 1'b1l;
writable out <= 1'bi1;

end

else begin
writable out <= ~writable out;

end

end
end
end

endmodule

170

Module: sheet player
Description:

Plays back sheet music in a 16 bit format. The lower 14 bits represent 7
notes (quarter,

half, or whole).

Parameters:
Defined in Audio Generator Module

Inputs:
See below

Outputs:
See below

module sheet player #(parameter
SHEET ADDR WIDTH=4,
SHEET DATA WIDTH=16,
NOTE INFO WIDTH=2,

//LOG_TICKS=11,
QRT DURATION=128,
LAST OCTAVE=7,

LOG INSTRUMENTS=1,
LOG_SAMPLES=8,
LOG_NOTES=4,
LOG_OCTAVES=3,
LOG_ HARMONICS=3)

input wire clock,

//resets the modules state
input wire reset,

//enable signal for the module
input wire enable in,

//specifies next beat switches to next beat's notes
input wire beat enable,

//specifies next sample, indicates when the note should beat
//turned off in conjunction with the DURATION parameter which
//is given in terms of samples

input wire sample enable,

171

//this module can only play one octave from one instrument at a time
//this selects which octave and instrument to use

input wire [LOG OCTAVES-1:0] octave index,

input wire [LOG INSTRUMENTS-1:0] instrument index,

input wire
output reg
output reg

[SHEET DATA WIDTH-1:0] sheet data,
[SHEET ADDR WIDTH-1:0] sheet address,
send new address,

//indicates that the module has finished playback
output reg done playing,

//0UTPUTS TO KEY PRESS MEMORY

output
output
output
output
output

reg [LOG NOTES-1:0] write note index,

reg [LOG OCTAVES-1:0] write octave index,

reg [LOG_INSTRUMENTS-1:0] write instrument index,
reg key pressed,

reg key press_we

(octave index - 1)

reg [SHEET DATA WIDTH-1:0] current sheet data;

//note info parameters

localparam [NOTE INFO WIDTH-1
localparam [NOTE INFO WIDTH-1
localparam [NOTE INFO WIDTH-1
localparam [NOTE INFO WIDTH-1

:0] =
:0]
:0]
:0]

NONE
QUARTER
HALF

WHOLE

0

1;

23
33

//note name parameters

localparam [LOG NOTES-1:
localparam [LOG NOTES-1:
localparam [LOG NOTES-1:
localparam [LOG NOTES-1:
localparam [LOG NOTES-1:
localparam [LOG NOTES-1:
localparam [LOG NOTES-1:

0]
0]
0]
0]
0]
0]
0]

I I n
B e we

B MO PRFP OWIO,

moaow>»am

wire last beat flag sheet data[SHEET DATA WIDTH-1];
//can't support some notes in the last octave

wire [LOG OCTAVES-1:0] base octave = ((octave index
octave_ index);

LAST OCTAVE)

reg [2:0] current note;
reg [3:0] current note offset;
wire [NOTE INFO WIDTH-1:0] current note info

(sheet data>>current note offset);

WHOLE)

localparam NOTE STATE WIDTH = 3;
wire [NOTE STATE WIDTH-1:0] note info state
? 4 {1'b0, current note info});

((current note info ==

reg [20:0] note_ states;

172

?

reg [4:0] note state offset;
wire [NOTE STATE WIDTH-1:0] current note state =

(note states>>note state offset);

reg [NOTE STATE WIDTH-1:0] new note state;

localparam
localparam
localparam
localparam
localparam

[NOTE STATE WIDTH-1:
[NOTE STATE WIDTH-1:
[NOTE STATE WIDTH-1:
[NOTE_STATE WIDTH-1:
[NOTE STATE WIDTH-1:

0]
0]
0]
0]
0]

wire release quarter notes;
reg release signal;

NONE STATE = O
QUARTER STATE
HALF STATE = 2;
THREE _STATE = 3;
WHOLE STATE = 4

1;

wire [LOG_SAMPLES-1:0] sample count;

overflow counter #(
.COUNT WIDTH(LOG SAMPLES),
.MAX COUNT (QRT DURATION-1))

sample counter (

.clock (clock),
.increment (sample enable),

.restart (beat enable

.count(sample_count),
.overflow(release quarter notes)

)

reset),

reg [LOG NOTES-1:0] current note index;
reg [LOG OCTAVES-1:0] current octave;

always @* begin

case (current note)

3'do:
3'd1l:
3'd2:
3'd3:
3'd4:
3'd5:
3'de6:
default: current note index

endcase

current note index
current note index
current note index
current note index
current note index
current note index
current note index

moow®PonmT

case (current note)

3'd0: current octave =
3'dl: current octave =
3'd2: current octave =
3'd3: current octave =
3'd4: current octave =
3'd5: current octave =
3'd6: current octave =
default:

0;

base octave;
base octave;
base octave;
base octave;
base octave + 1;
base octave + 1;
base octave + 1;

current octave = O;

173

endcase
end

reg set key press;

always @* begin
case (current note state)
NONE STATE: set key press = 1'b0;
QUARTER STATE: set key press = (release signal ? 1'bO
1'b1);
HALF STATE: set key press = 1'bl;
THREE STATE: set key press = 1'bl;
WHOLE STATE: set key press = 1'bi1;
default: set key press = 1'b0;
endcase
end

reg current data processed, last beat done, end playback;
reg beat done, sample done;

reg beat switch;
reg update;

always @* begin

if((current_note_state == NONE STATE) || (current note state ==
QUARTER STATE)) new note state = (end playback ? NONE STATE : note info state);
else new note state = current note state - 1;

end

always @(posedge clock) begin
if (beat enable) beat switch <= ~beat switch;
end

always @ (posedge clock) begin
if (reset || done playing) begin

note states <= 0;
release signal <= 1'bO;
sheet address <= 0;
key press we <= 1'bO;
current note <= 0;
current note offset <= 0;
note state offset <= 0;
sample done <= 1'b1;
beat done <= 1'bi1;
update <= 1'b1;
write note index <= 0;
write octave index <= 0;
write instrument index <= O0;
key pressed <= 1'b0;

174

end playback <= 1'b0;

//sheet data <= 1'DbO;

last beat done <= 1'bO;

if (reset) done playing <= 1'bO;
end
else begin

last beat done <= beat done;

if (release quarter notes) release signal <= 1'bl;
else if (!last beat done && beat done) release signal <=

if (beat enable) begin
beat done <= 1'b0;
end

if (sample enable) begin
sample done <= 1'bO;
current note <= 0;
current note offset <= 0;
note state offset <= 0;
end
else begin
if (enable in) begin
if (current note != 7) begin

if (!sample done) begin

//write note information every sample

write note index <=
current note index;

write octave index <= current octave;

write instrument index <=
instrument index;

key pressed <= set key press;

key press we <= 1'b1;

end
else begin

key press we <= 1'DbO;
end

//if notes shouldn't change on next beat,
don't update

if ((current note state != NONE STATE) &&
(current note state != QUARTER STATE)) update <= 1'bO;

//on the beat, update the note information
if (!beat done && update) begin
case (current note)
0: note states[2:0] <=
new note state;
1: note states[5:3] <=
new note state;

175

2: note states[8:6] <=
new note state;
3: note states[11:9] <=
new note state;
4: note states[14:12] <=
new note state;
5: note states[17:15] <=
new note state;
6: note states[20:18] <=
new note state;
endcase
end
else begin

end

note state offset <= note state offset +
NOTE STATE WIDTH;
current note offset <= current note offset
+ NOTE_INFO WIDTH;
current note <= current note + 1;
end
else begin
update <= 1'b1;
if (!beat done && update) begin
end playback <= (last beat flag ||
(&sheet address));

if (end playback) begin
sheet address <= 0;
done playing <= 1'bil;
end
else begin
sheet address <= sheet address

+ 1;
end
end
key press we <= 1'bO;
sample done <= 1'b1l;
beat done <= 1'bi;
end
end
else begin
key press we <= 1'bO;
end
end
end
end
endmodule

176

Module: event player
Description:
Plays back a transformed MIDI song from a ROM.

Parameters:
Defined in Audio Generator Module

Inputs:
See below

Outputs:
See below

module event player #(parameter
EVENT ADDR WIDTH=11,
EVENT DATA WIDTH=21,
LOG_TICKS=11,
LOG TICKS PER SECOND=3,
NUM PULSES=48000,

LOG_INSTRUMENTS=1,
PRECISION WIDTH=16,
LOG_NOTES=4,
LOG_OCTAVES=3,
LOG_HARMONICS=3)

input wire clock,

//resets the modules state
input wire reset,

//enable signal, tells this module it can process information and write
to the key state RAM
input wire enable,

//play signal (only increments counter if playing, otherwise it is
paused) .
input wire play,

//ready pulse (tells it to increment the counter which gives it the tick
count)

input wire ready,

//indicates that the module has completed playback
output reg done playing,

//0UTPUTS TO KEY PRESS MEMORY
output reg [LOG NOTES-1:0] write note index,

177

output reg [LOG OCTAVES-1:0] write octave index,

output reg [LOG INSTRUMENTS-1:0] write instrument index,
output reg key pressed,

output reg key press we

localparam [PRECISION WIDTH-1:0] PULSE PER TICK = (NUM PULSES /
(1<<LOG_TICKS PER SECOND)) ;

wire [PRECISION WIDTH-1:0] pulse_count;
wire tick enable;
reg [LOG TICKS-1:0] tick count;

//counts pulses and increments the tick count on overflow (when
PULSE PER TICK is reached).
overflow counter #(
.COUNT WIDTH (PRECISION WIDTH),
.MAX COUNT (PULSE PER TICK-1))
pulse to tick (
.clock (clock),
.increment (play && ready),
.restart (reset),

.count (pulse count),
.overflow(tick enable)

reg [EVENT ADDR WIDTH-1:0] event address;
wire [EVENT ADDR WIDTH-1:0] next event address;

wire [LOG NOTES-1:0] event note index;

wire [LOG_OCTAVES-1:0] event octave index;

wire [LOG_INSTRUMENTS-1:0] event instrument index;
wire [LOG TICKS-1:0] event tick;

wire event key press;

//USE THIS ADDRESS TO LOOKUP IN EVENT MEMORY

//THAT WAY EVENT ADDRESS LINES UP WITH CURRENT EVENT INFO

assign next event address = ((event tick == tick count) ? (event address
+ 1) : event address);

wire [EVENT DATA WIDTH-1:0] current event info;
assign {event key press, event tick, event instrument index,
event octave index, event note index} = current event info;

//ROM containing transformed MIDI file to be played
rose midi midi (
.addr (event address),

178

.clk(clock),
.dout (current event info)

)

always @ (posedge clock) begin

if (reset || done playing) begin
event address <= 0;
key press we <= 1'bO;
tick count <= 0;
if (reset) done playing <= 1'bO;

end

else begin
if (play && tick enable) tick count <= tick count + 1;

//if enable signal is sent, and the module isn't done playing

track
//process track information
if (enable && !done playing) begin
if (current event info != 0) begin
if (event tick == tick count) begin
//go to next event
event address <= next event address;
//if at last address (event address is all
ones)

//the module is done playing
if (&event address) done playing <= 1'bil;

//write note information
write note index <= event note index;
write octave index <= event octave index;
write instrument index <=
event instrument index;
key pressed <= event key press;
key press we <= 1'b1;
end
else key press we <= 1'bO;
end
//all current event info

0, means reached end of
track
//reset all signals
else begin
done playing <= 1'bil;
event address <= 0;
//don't output key press info if at empty slot
key press we <= 1'DbO;

end
end

else begin

//don't output key press info if not enabled or
done playing

179

key press we <= 1'DbO;

end
end
end

endmodule

audio_gen utils.v

Module: overflow counter
Description:

Counts up to a particular maximum value and restarts. When the maximum
value is reached,

the counter outputs an overflow signal on the next clock cycle after
restarting at

ZEero.
Parameters:
COUNT WIDTH - the width in bits of the count
MAX COUNT - the maximum value that the counter can reach before
restarting
Inputs:

clock - the clock pulse (27 MHz)
increment - when high, the counter increments on the next clock cycle
restart - when high, the count is set to zero and overflow goes low.

Outputs:
count - the current count (0 to MAX COUNT)
overflow - (pulse) set high when the counter iterates through all numbers
between 0 and
MAX COUNT
Notes:
1. Make sure MAX COUNT is within the range of numbers possible given

COUNT WIDTH,
otherwise, there will never be overflow.

module overflow counter #(parameter
COUNT_WIDTH=O,
MAX_COUNT=0)

input wire clock,

input wire increment,
input wire restart,

180

output reg [COUNT WIDTH-1:0] count,
output reg overflow

always @* begin
if (increment && (count == MAX COUNT)) overflow = 1'bil;
else overflow = 1'b0O;

end

always @ (posedge clock) begin
//restart, so set count to zero and set overflow low.
if (restart) begin
count <= 0;
end
else begin
//increment the count
if (increment) begin
//restart if MAX COUNT is reached, and set the overflow

high
if (count == MAX COUNT) begin
count <= 0;
end
//otherwise, just increment. overflow is low
else begin
count <= count + 1;
end
end
//overflow is only set high if iterating (aka increment is
high)
else begin
//enable overflow <= 1'b0;
end
end
end
endmodule

//interpolates using the delta per sample and the number of pulses
//converts the delta to a delta per pulse (INCREASE UNIT) and uses that to
//increase the value (has precision bits to allow for higher granularity)
module interpolator # (parameter

LOG_SAMPLES=8,

NUM_PULSES=48000,

DELTA WIDTH=8,

PRECISION WIDTH=8)

input wire signed [DELTA WIDTH-1:0] delta,
input wire [DELTA_WIDTH+PRECISION_WIDTH—1:O] data_in,

output wire [DELTA WIDTH+PRECISION WIDTH-1:0] data out

localparam DATA WIDTH = PRECISION WIDTH + DELTA WIDTH;

181

localparam [PRECISION WIDTH-1:0] PULSE PER SAMPLE = (NUM PULSES /
(1<<LOG_SAMPLES)) ;

localparam [PRECISION WIDTH-1:0] ZERO = O;

localparam signed [PRECISION WIDTH:0] INCREASE UNIT =
(((1<<LOG_SAMPLES) * (1<<PRECISION WIDTH)) /NUM PULSES) ;

wire signed [DATA WIDTH:0] increase = delta * INCREASE UNIT;
wire signed [DATA WIDTH:0] signed data = {1'b0O, data in};
wire signed [DATA WIDTH:0] result = data in + increase;

assign data out = (result[DATA WIDTH] ? O : result[DATA WIDTH-1:0]);
//assign data out = data in + increase;

endmodule

//adds a value to another value but when the value goes over the MAX value,
//MAX is output
module max adder # (parameter

DATA WIDTH=8,

MAX= (1<<(DATA WIDTH-1)))

input wire [DATA WIDTH-1:0] data,
input wire signed [DATA WIDTH-1:0] delta,

output reg [DATA WIDTH-1:0] result

wire signed [DATA WIDTH:0] signed data = {1'b0O, data};
wire signed [DATA WIDTH:0] sum = signed data + delta;

//parameter [DATA WIDTH-1:0] MAX = (1<<(DATA WIDTH-1));

always @* begin

if (sum > MAX) result = MAX;

else if (sum < 0) result = 0;

else result = sum[DATA WIDTH-1:0];
end

endmodule

//parameterized dual port (one read port, one write port) module
//modified version of mybram from lab4
module wrbram # (parameter

LOGSIZE=14,

WIDTH=1)

input wire [LOGSIZE-1:0] read addr,
input wire [LOGSIZE-1:0] write addr,
input wire clk,
input wire [WIDTH-1:0] din,
output reg [WIDTH-1:0] dout,
input wire we

) s

// let the tools infer the right number of BRAMs

182

(* ram style = "block" *)
reg [WIDTH-1:0] mem[(1<<LOGSIZE)-1:0];
always @ (posedge clk) begin
if (we) mem[write addr] <= din;
dout <= mem[read addr];
end

//INIT
integer 1i;
initial begin

for (1 = 0; i1 < (1<<LOGSIZE); i = i+1) begin

mem[i] = O;
end
end
endmodule

//parameterized single port BRAM module taken from lab4

module mybram # (parameter LOGSIZE=14, WIDTH=1)
(input wire [LOGSIZE-1:0] addr,
input wire clk,
input wire [WIDTH-1:0] din,
output reg [WIDTH-1:0] dout,
input wire we) ;
// let the tools infer the right number of BRAMs
(* ram style = "block" *)
reg [WIDTH-1:0] mem[(1<<LOGSIZE)-1:07;
always @ (posedge clk) begin
if (we) mem[addr] <= din;
dout <= mem[addr];
end

//INIT
integer i;
initial begin
for (i = 0; 1 < (1<<LOGSIZE); i = 1i+1)
mem[i] = O;
end
end
endmodule

//scales a signed value by the given scale factor
module scaler # (parameter

DATA WIDTH=18,

SCALE WIDTH =8)

input wire clock,

input wire reset,

input wire enable,

input wire signed [DATA WIDTH-1:0] data,
input wire [SCALE WIDTH-1:0] factor,

183

begin

output reg [DATA WIDTH-1:0] product

//factor converted to signed positive value)
wire signed [SCALE WIDTH:0] signed factor = {1'b0, factor};

//multiply by factor (factor converted to signed positive value)
wire signed [SCALE WIDTH+DATA WIDTH:0] mult = data * signed factor;

//divide by 2~ (SCALE WIDTH-1)
wire signed [SCALE WIDTH+DATA WIDTH:0] shift = mult >>> SCALE WIDTH-1;
always @* begin
if (reset || !enable) begin
product = 0;
end
else begin
if (factor[SCALE WIDTH-1]) begin
product = data;
end
else begin
product = shift[DATA WIDTH-1:0];
end
end
end
endmodule

//scales a unsigned value by the given scale factor
module positive scaler # (parameter

DATA WIDTH=18,

SCALE WIDTH =8)

input wire clock,
input wire reset,
input wire enable,

//the data, converted to unsigned format internally
input wire [DATA WIDTH-1:0] data,

//the scale factor
input wire [SCALE WIDTH-1:0] factor,

output wire [DATA WIDTH-1:0] product
wire [DATA WIDTH:0] temp;
assign product = temp[DATA WIDTH-1:0];
scaler #(

//parameters

.DATA WIDTH (DATA WIDTH+1),
.SCALE WIDTH (SCALE WIDTH)

184

note amp calc (
//inputs
.clock (clock),
.reset (reset),
.enable (enable),
.data({1'b0, data}),
.factor (factor),

//outputs
.product (temp)

) s
endmodule

// parameterized 2 to 1 mux
module mux2 # (parameter
W=1) // data width, default 1 bit
(
input [W-1:0] a,b,
input sel,
output [W-1:0] =z
) s
assign z = sel ? b : a;
endmodule

185

