6.111 Final Project Report:
Global Domination

Bo Shi, David Wang
December 11, 2004

Abstract

This final project aims to create a floating globe complete with an atmospheric
layer. Two LED-array arcs mounted on a rotating pole spin at a high frequency
(approximately 30 Hz) so that the rotating arcs will appear to display a 3—dimensional
floating earth and cloud cover.

Contents

1 Overview

2

3

Globe Assembly

Modules

3.1 Timing Module (David Wang)
3.2 Map Module (Bo Shi)
3.3 LED Controller (David Wang)
3.4 RS232 Module (BoShi)
Conclusion

Appendix: Verilog Source

5.1
5.2
5.3
5.4
9.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15

wdtop.v (Top Level Module)
mapper.v (Map Module)
enc_fsm.v (Map Component)
encoder.v (Map Component)
pulse.v . . .o
rs232.v (RS232 Module)
step2pulse.v
syne8.v (8-bit Synchronizer
sync.v (Synchronizer
theta_counter.v (Timing Component)
theta_divider.v (Timing Component)
timing fsm.v (Timing Module)
decoder (LED Driver Controller
led_clock.v (LED Driver Component)
led_enable.v (LED Driver Component)

List of Figures

Structure of the mechanical assembly.
Block Diagram of Verilog components.
Timing Module FSM
Timing module simulation waveform.
One cycle of map operation.
Map caching simulation.o
LED Driver Chip Layout,
LED Controller Waveform.
RS232 module FSM.
0 RS232 Address selection.o

= © 00 ~J O U ix W N =

List of Tables

1 Custom serial protocol

i

© © 00 O Ui Wi

1 Overview

The globe assembly contains a significant mechanical and Verilog component. By rotating
and strobing a vertical arc of LEDs at high frequencies, the human eyes will perceive an
image. The Verilog component of the system contains four major modules:

e LED Driver Decoder Module This module will rotate along with the LED-arcs, receiv-
ing instructions from the Map Module via commutator brushes and managing the LED

driver circuitry. A combination of 8-bit latches and Darlington arrays will be driven
by a set of programmed PAL22V10 chips.

e Map Module This module maps the image stored in memory to the LED array based
on the position of the LED-arc. This module also serializes the data and sends it to
the LED Driver Module.

o RS232 Module This module is a minor FSM that accepts serial data via RS-232 and
writes to the RAM. A simple computer program will transmit complete RAM images
to this module which will then alter the RAM as necessary. Hyperterminal is used to
send test data.

e Timing Module This module keeps track of the status of the mechanical hardware and
controls the timing of the LEDs. The sync_pulse signal is received from the mechanical
assembly once every rotation. The Timing module will also keep track of the rotation
speed of the system and adjust LED timing parameters as necessary, preventing minor
perturbations from the intended rotation speed from affecting operation.

Figure 1 shows the mechanical component of this project. A bus for power and commu-
nications connects the lab kit and the mechanical structure by using commutator brushes.

Figure 2 show the organization of the modules. The LED Driver module is not shown.
The LED Control signal shown in both figures is routed to the LED Driver module. The Map
module receives the vertical position of the LED arcs theta and retrieves the appropriate
addresses in memory representing LED on/off configuration for that position.

2 Globe Assembly

One of the most time consuming aspects of this project involves building the rotating as-
sembly. In order to ensure the blurring of the LEDs, an AC motor provides 1800 RPM
rotation at 1/25 HP (equivalent to a 30 frames per second refresh rate). The nature of the
AC motor gives a minimal reduction in RPM until the rated horse power is met, making
achieving 30 fps easier with little initial consideration for loading trade offs. Nevertheless,
the assembly incorporates several precautions to ensure a reduction in rotational friction.
These precautions include two bearings to reduce vibrational loses and the selection of a
serial instead of parallel data transfer method to reduce the friction from a large number of
commutator brushes.

Balancing Screw

Commutator Disk

(9 rings)

Atmosphere/Earth

Circuit Boards

Opticnal Add-On

Circuit Boards

Earth Arc

(10 in diameter)

(Eclipsed)

E\ﬁ_q

P-4

Atmosphere Arc
(11 in diameter)

Hollow Shaft
as Wire Conduit

Pillow Block
Bearing

Press Fit

Timken Angular
Roller Bearing

1/25 hp,
1800 rpm,
Motor Housing

(AC)

Figure 1: Structure of the mechanical assembly.

(serial, serialrst)

Serial Line
ramwe ramq[7:0] start_mapper
N q[7:0] start_mapp
> <€
RS232 Module RAM Map Module Timing Module
datazram(7:0] theta[2:0]
(RAM LOAD) 3 >
Ll)
< nc_pulse
<
0 1 \§ mep_ram reserve
] —theta_selec30)
A A
Buffer T5232_tam_addr(3: Map_ram_addr[3:0]
i
<€
A
RS-232 Lines
(rxd, txd)

Figure 2: Block Diagram of Verilog components.

r 3
start theta

Theta Counter

counts down from
theta_period and
pulses start

theta_period
Theta Divider

theta_period = sync_pulse
(# clock periods in last revolution
+ remainder clock periods in last

clk l revolution) / theta_select

theta_select

Figure 3: Timing Module FSM

The final design requires 7 commutator brushes: 1 brush for power, 1 for ground, and
two pairs of serial data and reset signals coming from two lab kits (1 pair providing data
for each arc). The final commutator brush sweeps past a 5V pin, designed to produce a 5V
pulse for every revolution of the assembly. The result is 2 power signals, 4 signals into the
assembly and one sync_pulse coming out of the assembly.

The 4 signals into the assembly are connected through Schmitt triggers in order to clean
up the signals prior to being communicated through the commutator disk. 8 sets of 8 bus
lines run from these boards through the central rotating shaft to each arc, allowing 64 LEDs
per arc to be independently controlled via the LED Driver circuits. Specifically, these bus
lines connect the Darlington arrays to the negative lead of the LEDs, requiring the positive
leads to be wired to 5V. In order to reduce redundant bus lines, the positive leads of the
LEDs connect to the globe assembly’s arcs, which through a metallic bearing with conductive
lubricant, are shorted to a 5V supply.

To ensure good data fidelity, Schmidt triggers are incorporated on the signal lines before
being connected to the commutator brushes in a separate electronics box housing (not de-
picted in Figure 1). The sync pulse is also piped through a Schmitt trigger in the same box
before being output to the lab kits.

The resulting assembly is depicted in Figure 1, minus the complexity of the wiring. The
entire assembly measured about 26 inches tall with a 12 inch square base.

3 Modules

3.1 Timing Module (David Wang)

The timing module has the responsibility of telling the map module which theta (slice along
the longitude) to draw and when it should begin drawing that theta. The map module then
has the responsibility to work with the serial encoder and transmit data as fast as possible
to send 8 packets of 8 bit data, to update phi, the LEDs in one arc. If the map module
is unable to complete sending the 8 packets of data through the serial encoder, the timing

Name: Welug: D.0us 40.0ug B0.fus A0.0us 1000us 120.0us 140, 0us 160 0us 180.0us an
fife= EyHC_pulse il
clk il

sattheta |0 || RN ENIRREE I Y I Y Y)

1heta_galact HO% L:]

thatal?.0) | HO oo ROl ms oo {iF Y/sE Ys0 7C {98 (BAY 06 {00 {1F (3

Figure 4: Timing module simulation waveform.

module simply prompts the map module to start the next theta.

The timing module comes up with an appropriate duration for each theta slice to be
displayed by taking in three important inputs: sync_pulse, theta_select, and clk. Note
that no reset is necessary. sync_pulse is a signal from the globe assembly that goes high for
an undetermined number of clock periods once every revolution. theta_select, allows the
user to select how many theta slices should get drawn per revolution, effectively allowing the
user to select the horizontal resolution.

The module works in three functioning blocks: Theta Divider, Theta Counter, and then
some input and output logic within the overall Timing Module block.

The two non synchronous inputs sync_pulse and theta_select are first sent through a
series of registers to sync them with the lab kits 10 Mhz clock. The synced inputs are then
sent to Theta Divider.

Theta Divider counts the number of clock periods between the two rising edges of the sync
pulse adds it to the remainder from the last division and divides the total by theta_select
(addition of the remainder from the last sync_pulse is necessary to prevent error build up
causing the rotating image to get skewed). The continuous recalculation of theta_period
by the timing module is necessary to counter act slow RPM variations that can come from
the motor.

The resulting theta period is sent to Theta Counter, where a simple counter outputs a
start pulse every time it counts up to theta_period.

The signal theta is calculated in the overall Timing Module block by dividing 256 (the
number of slices stored in memory) by theta select and storing the value into theta increment.
At the start of every sync_pulse, theta is zeroed and theta_increment is added to theta
at every start pulse. Some additional mux logic is used to ensure that theta can never reach
a value greater than 256.

Figure 4 depicts the timing module’s simulation. The sync_pulse is spaced erratically
on purpose to provide a more robust verification of the logic’s performance. Notice that after
the very first sync_pulse there is no change in theta select or start _theta, this is because
the timing module is designed to calculate theta parameters off of data collected from the
previous revolution. A reset is therefore not necessary, because at 1800 RPM, it will take
a maximum of 1 complete revolution for the LEDs to display appropriately, a comparably
small fraction of time. After the second sync pulse, start_theta begins to pulse, assuming
that the next revolution will take place in the same amount of time as the previous one.
Unfortunately, the third sync pulse comes much faster, allowing only 4 start_theta pulses
to get produced. After the third sync pulse, start_theta begins to pulse again, this time at

@\ ps 5.1|2us 10.2|4 ug 15.3|Bus 20.4}8 ug 25.§3us 30.?|2 us 35.8|4us 40.8|Eus 48.E|I8us 51.|2 uz 58.3|2us B1.=}4us BB.SIB uz ?1.§8us
M ame

(TR I

[0 Ll I
|- ok _l;,i rat
I L start |
- || theta 17
. i k= fram_state 10007 IM‘I]
v =] B ramg FO i i
B :: i?i_ ram_addr (1) 103
£ o] @ ledbus 00 (B0YEDYABY__ AA ¥ BA (BB YMMTENM__CC) DC 3 DD EE_(FE ERaaImnpC T _oaimaz
= | lenable 13) 13) | 1 | | | [
E | Map_ram_leserve _W
Ly 2] e Tanl RNy iy N Bl
b ked zenalist [|
EI yEinE

Figure 5: When the mapper receives a start pulse, it begins simultaneous operations of
caching data from the RAM and serializing 64 bytes of data.

Table 1: Lab—Kit to Assembly Serial Protocol using a 10 Mhz clock.
ID Start Bit | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0
Duration 5 10 10 10 10 10 10 10

a much higher rate, because the previous revolution time was so short. After start_theta
pulses 8 times, as dictated by theta select, it stops. However, at the fourth sync_pulse,
the space of the sync_pulses become more regular resulting in a more equitable spacing the
start_theta pulses.

3.2 Map Module (Bo Shi)

Figure 5 shows a simulation of the activity in the Map module after a start pulse is received.
The high level of activity on ramq and ram_addr labeled as (1) is the caching operation.
While the RAM is being accessed, the map _ram reserve signal is asserted as shown near
label (2). Label (3) on the lenable signal coincide with valid data on the ledbus signals
above.

The encoder module serializes one byte of data (Figure 1). While it is operating, it
outputs a high busy signal and does not accept any other commands. The data protocol used
between the lab kit and the mechanical assembly is asynchronous and runs at approximately
115 Kbs. The format is as follows: 1 start bit followed by 8 bits beginning with the MSB.
Using a 10 Mhz clock, The start bit is high and lasts a duration of five clock cycles. Each
bit lasts 10 clock cycles. The encoder is implemented using a counter which counts 85 cycles
and outputs the serial signal based on the time division discussed before.

The mapper module is responsible retrieving and serializing LED control signals. Two
operations are initiated. The mapper first begins caching of 8 adjacent bytes of data from
RAM. The beginning address is calculated from the theta parameter from the Timing FSM
as follows: address = theta x 8 + ¢ where ¢ is an integer from zero to seven. Since serializing

ps BdDiD ne 1.2|8 Uz 1.9I2 uz 2.553 uz 3.2I Uz 3.8:1 uz 4.4|8 uz 51 I2 THE S ok ?IB uz B.i} uz T Dld ug ?.SIS Uz 8.3|2
MHame 75 s
A

T A AU AU AUV
| = rat | | |
= start il
i theta 1z
(| rang fa =
B ISl g e
=1 ledbus e 00 [b &0 b]
| lenable ﬂ 1
kod Map_fam_fesare | |
o] e EEEERgEg iRl e nnaniEREEET
= | serialrst | |
hed idle | |(3)

Figure 6: This figure is a close-up of Figure 5’s caching operation. Label (1) shows the
serial signal. As can be seen from signals above label (2), data 0010101010 is accessed from
address 96 and the serial signal coincides with this.

one byte of data takes considerably longer than retrieving one byte of data from RAM, the
serializing process will begin. The encoder module is controlled by the encoder FSM which
initiates the encoder and waits for it to complete for 8 bytes. Figure 5 shows the overall
process.

3.3 LED Controller (David Wang)

The LED Driver module is best represented in the circuit diagram depicted in Figure 7. This
module has the responsibility of decoding the serial data and latching it onto the appropriate
LEDs. While this might sound simple to do, the implementation is made difficult because
of a 10 register limitation imposed by the PALs.

The final division of the code requires 3 PALs. One PAL used to serve as the Decoder
FSM (Figure 7), another as the clock/counter to store the state of the Decoder FSM (Figure
7), and the final as the Enable, to enable one latch at a time to latch the data on the bus
lines out of the decoder. It is important to note that the circuitry shown in Figure 7 exists
only on the circuit boards of the Assembly, and is duplicated: one to drive the Earth Arc
and another to drive the Atmosphere Arc. Furthermore, the circuitry is driven by a 10Mhz
clock independent of the off board clock controlling the lab kit’s FPGA.

The architecture shown in Figure 7 is designed to update 8 sets of 8 LEDs at a time (one
arc). At the start pulse of the serial_in, the Decoder PAL sets the reset_Clk signal to low,
allowing the Clock PAL to begin counting. Using the counter vales from the Clock PAL, the
Decoder PAL latches the serial data on the LED 0 bus line after 10 clock periods, on LED
2 bus line after an additional 10 clock periods and so on. At the end of 85 clock periods,
the data on the bus lines LED[7:0] should all be latched to either 1 or 0. At this point the
Clock PAL would increment select[2:0] to the next set of 8 LEDs to get updated, and
the Decoder would send a L_Enable pulse to Enable PAL. Using the select and 1_enable
signals, the Enable PAL, then selects the appropriate latch to enable, and gives the latch

-— - !
- I .H-I—?
. L a - i -3
timi - ———
L] —ia i 1 ey
i | TaLStmoer
L2 b |nverting = Darfingion < |
[o Lch we BTEY e +
l (W T ki !—"
T e L 4 r i l
— R = -
—Bermiin - 1
— o -1 L 5 N " 4
; [y - - [0 »
— W e m— ' e -- e ol 3 p——y
REECKN Comie — L) L2 = i L " f——
e i (Lo |
L i ' ——
= Lt [l | To LHDg-8. 08
Irrvating == * Dl iy *
Zrwon - | a Leboh s PR -7)|
"Basadst | et S o
[T i - | l
fwent > -
ﬂud:m_ _EpTewE_—
Rl L
.
-

L
] [&
kit v
Enable
e f— ey
L

Figure 7: Two pairs of Latches and Darlington Arrays are shown of a total of 8 pairs. The
entirety of this circuit would need to be used twice, once to control the 64 LEDs on the
Earth Arc and another to control the 64 LEDs on the Atmosphere Arc.

Start Pulse Start Pulse Start Pulse
Marme Value: ’L 10 [Ius 20.0us 30.0us | 40 Dus 50 Iﬂus EDIDus TDIDusl a0 Pus 50 IDus 100

= I N N O | I
= 15t o
Jam= el 0
enablent[7..0] IF 00000000) 0000000 00000000 00000000 0000000
B ledbus HOD m FEFET R 18]
2 ot v NNz = Sy

Figure 8: The waveform shown in this figure depicts three start pulses and the ideal behavior
of the digital logic on the three PALs. After the initial reset pulse, the first start pulse starts
the counter in the Clock PAL. This causes values to be latched onto the LEDbus in the
Decoder PAL every 10 clock cycles. Once the clock counts up to 85 clock cycles, the value
of enableout changes for one clock period to make the appropriate latch store the value on
the LEDbus.

one pulse so that it may latch the value of the LED bus line. From here, the latched data is
simply passed to the Darlington array, where the Darlington circuitry serves as a voltage to
current switch, driving current to the appropriate LEDs whenever the input voltage is high.
At the next clock period, the Decoder PAL uses a register to store that it is in an idle state,
and continuously sends a high reset_clk signal to the Clock PAL, forcing the Clock PAL
to continuously be reset until the next start pulse of the serial_in. This process repeats
continuously for each arc, requiring 8 sets/packets of 8 bit data to be decoded per theta slice.

3.4 RS232 Module (Bo Shi)

The RS232 module implements the expansion capabilities of the project. It has the capability
to modify the contents of the RAM when the Map module is not busy. In Figure 2, the 2-bit
mux selects which address to use among the Map module and the RS232 module.

The FSM of the RS232 module is shown in Figure 9. Since the Map module has priority
access to the RAM, RS232 data is buffered using a FIFO MegaFunction. The FIFO module
has a write request signal which is enabled when the RS232 module signals that data is ready
on the buffer. When data is ready, 2 clock cycles (states UPDATE1 and UPDATE2) are devoted
to fetching data from the FIFO and writing the data to the RAM.

The RS232 module writes data sequentially in RAM. When the module is reset, the
internal address counter is set to zero. Each time a byte is written to RAM, the counter
increments. Consequently, in order to make any changes, a computer program must write
all 2048 bytes. Unfortunately, this is somewhat inefficient. A better protocol would perhaps
be able to specify a 10-bit address in addition to 8-bits of data to write to said address.

4 Conclusion

The prototype assembly resulting from the project was only able to drive 8 LEDs on the
atmosphere arc unreliably. While this project did have many important aspects of digital
design including, error accommodation, fitting coded logic into hardware constraints, serial

state <= (~enable || empty)

Y

UPDATE1 > UPDATE2

IDLE

f

Figure 9: The enable signal comes from the Map module. This signal is the inverse of
the map_enable_ram signal and indicates when the RS232 Module has permission to access
the RAM. The empty signal comes from the FIFO module. RAM is only updated (states
UPDATE1 and UPDATE2) when the FIFO is not empty and the Map module is not busy. When
the enable signal goes low, the FSM goes into the IDLE state as quickly as possible, meaning
that it will finish any RAM update and stop.

state==(enable & ~empty)

1 (state == UPDATE2)
0 1

address

Figure 10: The address is incremented each time the FSM enters the UPDATE2 state.

data transfer, and timing of memory usage, it had a very large mechanical component that
ended up providing many large time intensive mechanical problems. In simulations on the lab
kit, the LEDs performed with great reliability, but loss of data fidelity over the commutator
brushes despite sequences of Schmidt triggers made the final assembly perform poorly.

A large mistake was the assumption that the integration of the hardware and digital
logic would be simple once each portion was completed. The original design strategy was
therefore an attempt to get all 128 LEDs working in the first try. After many attempts, a
prototype featuring only 8 LEDs was assembled, allowing us to verify in the time remaining
that it was commutator unreliability that resulted in the noisy displays.

While the commutators proved to be the final obstacle to overcome, several intermediate
obstacles present themselves.

One of these were glitchy signals that came from the PALs in the LED Driver Module
as a result of the high 10 Mhz clock frequency. Ultimately, the glitches occurred at time
intervals that did not violate any setup and hold times, allowing the performance of the
LED Driver Module to be unhindered. Another problem was that the plastic support for the
commutator rings was collecting static electricity that affected signals on the commutator
brushes. A grounding wire seemed to correct this problem.

As mentioned, one of the primary challenges was signal integrity between the lab kit and
the mechanical assembly. Unusable sync pulse signals were fixed by using a low resistance
long lever switch which did not require a commutator brush. A possible solution to the other
signal problems is to use wireless communication. By mounting an IR receiver at the top
of the shaft of the assembly, one could eliminate both friction and noise from commutator
brushes.

5 Appendix: Verilog Source

5.1 wdtop.v (Top Level Module)

module wdtop(clk, rst, theta_select, rxd, txd, sync_pulse, serial, serialrst

// debug

Jrready

);

output rready;

// end debug

input clk, rst;

input [7:0] theta_select;
input rxd, sync_pulse;
output txd, serial, serialrst;

wire [7:0] theta;

wire [7:0] data2ram, ramg;
wire start_mapper;

10

10

wire ramwe;

wire map_ram_reserve;

wire [10:0] rs232_ram_addr, map_ram_addr;
wire [10:0] address;

wire reset;
20
sync syncrst(clk, rst, reset);
timing_fsm major_mod(
.clk(clk),
.sync_pulse(sync_pulse),
theta_select(theta_select),
theta(theta),
start_theta(start_mapper)
)i
30
// muz selector for address
assign address = map_ram_reserve ? map_ram_addr : rs232_ram_addr;
rs232 modrs232(
.clk(clk),
reset(reset),
rxd(rxd), // toplevel input (1)
txd(txd),
.enable(“map_ram_reserve), // controls off/on operation of this module(1)
ramwe(ramwe), // ram control signal (1) 40
.data2ram(data2ram), // ram write data (8)
ram_addr(rs232_ram_addr) // (11)
// debug
,.rready(rready)
)i
ram modram(
.address(address),
-we(ramwe), 50
.data(data2ram),
.q(ramq)

);

mapper gmap(

.clk(clk),

11

reset(reset),

start(start_mapper), // from dave’s module

ramq(ramq),

theta(theta), // from dave’s module 60
ram_addr(map_ram_addr),

.map_ram_reserve(map_ram_reserve),

serialout(serial), // toplevel output

serialrst(serialrst) // toplevel output

);

endmodule

mapper.v (Map Module)

// contains mapper and encoder
// mapper has a cache

// address algorithm: theta * 8 + phi
module mapper(clk, reset, start, ramq, theta,
ram_addr, map_ram_reserve, serialout, serialrst
// debug
//,idle, fram_state
); 10
//output idle;
//output [4:0] fram_state;
// end debug

// the signal which goes to the mux that selects an address
// from 15232 module or this module
output map_ram_reserve;

input clk, reset;

input start; // a pulse to command the mapper to cache 8 bytes 20
input [7:0] theta, ramg;

output serialout, serialrst;

output [10:0] ram_addr;

wire serialout, serialrst;

// internal signals

wire send; // the control signal to make the encoder send a byte

wire enc_busy; // the encoder is busy, making the encorder fsm wait

wire [7:0] led_data; // the data the encoder uses (taken from cache by encoder fsm)

12

reg map_ram_reserve;

reg start_enc_fsm,;

reg [10:0] ram_addr;

reg [63:0] cache;

reg idle; // this idle represents the status of caching
// ram stuff

// first two bits are a 4 cycle delay

// three high order bit are 0-7 counter

reg [4:0] fram_state; // “fetch”ram state

// encoder module, serializes byte data
encoder genc_mod(.clk(clk), .rst(reset), .send(send),
.data(led_data), .busy(enc_busy), .sout(serialout));
// encoder module controller, sends 8 bytes when told to start
enc_fsm genc_ctl(.clk(clk), .rst(reset), .start(start_enc_fsm),
.enc_busy(enc_busy), .cache(cache), .out(led_data), .enc_en(send));

assign serialrst = reset;

always @ (posedge clk) begin
if(reset) begin
idle <= 1;
fram_state <= 0;
ram_addr <= 0;
start_enc_fsm <= 0;

end
if(start) begin // fetching ram
idle <= 0;

fram_state <= 0;
map_ram_reserve <= 1;
end

if("idle) begin
if(fram_state !|= 5°b11111) fram_state <= fram_state + 1;
if (fram_state[1:0] == 2°b10) case (fram_state[4:2])
7: cache[63:56] <= ramgq;
6: cache[55:48] <= ramg;
5: cache[47:40] <= ramq;
4: cache[39:32] <= ramg;
3: cache[31:24] <= ramgq;

13

2: cache[23:16] <= ramg;
1: cache[15:8] <= ramg;
0: cache[7:0] <= ramg;
endcase
// change the address
// the ram address is calculated as follows:
// address = theta * 8 * lattitude
// where lattitude is between 0 & 7
if (fram_state[1:0] == 2°b00) ram_addr <= theta * 8 + fram_state[4:2]; &0
// we are done caching, reset
if (fram_state == 5°b11111) begin
map_ram_reserve <= 0;

idle <= 1;
fram_state <= 0;
end

// since serializing data is very slow, and accessing memory
// is fast, once we have the first byte of memory cached, we

// can begin encoding (the 3 high order bits equal 2) 90
start_enc_fsm <= (fram_state == 5’b00100) ;
end
end
endmodule

5.3 enc_fsm.v (Map Component)

module enc’fsm(clk, rst, start, enc'busy, cache, out, enc'en);
input clk, rst;
input start; // start pulse to make this guy start up
input [63:0] cache; // 8-byte register file
input enc’busy;
output [7:0] out; // the byte to serialize (sent to encoder)
output enc'en; // start pulse for encoder

// state[}] done bit/idle 10
// state[3:1] counter

// state[0] wait/nowait

reg [4:0] state;

// handles control signal for encoder
wire enc'en;

step2pulse gs2p(clk, (Trst && “state[4] && “state[0]), enc’en); // step to pulse conversion

14

// handles data for encoder
assign out = (state[3:1] == 7) 7 cache[63:56] : 20

(state[3:1] == 6) ? cache[55:48] :
(state[3:1] == 5) ? cache[47:40] :
(state[3:1] == 4) ? cache[39:32] :
(state[3:1] == 3) ? cache[31:24] :
(state[3:1] == 2) ? cache[23:16] :
(state[3:1] == 1) ? cache[15:8] : cache[7:0]; // last one is for state[3:1] == 0

always @ (posedge clk) begin
if (rst) state <= 5°10000;
else begin 30
if (start) state <= 0;
// if not idle
// state transitions
if ("state[4] && ((enc_busy && “state[0]) | | (“enc_busy && state[0]))) state <=s
end
end
endmodule

5.4 encoder.v (Map Component)

// Clock rate: 10 Mhz
// Protocol: [start bit] [data(7:0)]
// Optional parity bit may be used as an extension
module encoder(clk, rst, send, data, busy, sout);
input clk, rst, send;
input [7:0] data;
output busy, sout;

// When the send pulse is sent, data is latched and
// serialized. 10

// each byte lasts 85 clock cycles:
parameter DURATION = 85;
// parameter BIT'T = 10;

// parameter START'T = 5;

reg sout;
reg idle;

15

reg [7:0] buffer;
reg [6:0] ct;

assign busy = Tidle;

always @ (posedge clk) begin
if (rst) begin
ct <= DURATION;

idle <=

1;

sout <= 0;

end

else begin
// begin Tx
if (idle && send) begin
idle <= 0;

buffer <= data;

end

if ("idle) begin
ct <=c¢ct - 1;

if (ct == 0) begin

idle <= 1;
sout <= 0;
ct <= DURATION;

end
if (ct
if (ct
if (ct
if (ct
if (ct
if (ct
if (ct
if (ct
if (ct
if (¢t
end
end
end
endmodule

<= 127 && ct > 85) sout <= 0;

<= 85 &&
<= 80 &&
<= 70 &&
<= 60 &&
<= 50 &&
<= 40 &&
<= 30 &&
<= 20 &&
<= 10 &&

ct
ct
ct
ct
ct
ct
ct
ct
ct

> 80) sout <= 1;

> 70) sout <= buffer[7];
> 60) sout <= buffer[6];
> 50) sout <= buffer[5];
> 40) sout <= buffer[4];
> 30) sout <= buffer[3];
> 20) sout <= buffer[2];
> 10) sout <= buffer[1];
> 0) sout <= buffer[0];

16

20

30

40

50

9.9

5.6

pulse.v

module pulse(clk,sync pulse, sync'pulsep,sync pulse reset) ;

input clk, sync'pulse;
output syncpulsep;
output syncpulsereset;

reg sync pulse reset;
reg sync pulsep;

always @ (posedge clk) 10
begin
sync pulse’p <= (sync'pulse & !sync'pulsereset) 7 1 : 0;
sync pulse reset <= sync'pulse ? 1 : 0;
end

endmodule

rs232.v (RS232 Module)

// receives a RS232C data from rxd and outputs the data to io[7:0]

// and also transmits data+1 to txd.

// clk : 10Mhz

// Baud rate is set to 115200

// Parity : none

// Data bits : 8

// Stop bit : 1

// Flow control : None

module rs232(

clk, 10

reset, // 1

rxd, // 1
txd,

enable, // controls off/on operation of this module(1)

ramwe, // ram control signal (1)

data2ram, // ram write data (8)

ram'addr // (11)

// debug

,rready

); 20
output rready;

// end debug

17

///////1{{//////////////////////
input clk;

ingut rxd;

input reset;

output txd;

input enable; // enable from MAP MODULE

output ramwe; // ram write enable
output [7:0] data2ram;
output [10:0] ram’addr; // ram address

parameter IDLE = 0;
parameter UPDATE1
parameter UPDATE2

1;
2;

wire rready; // receiver ready, data comes out on the next clock cycle
wire thusy; // rs232 transmit signals
wire [7:0] rdata; // receriver data

wire [7:0] data2ram;

// for the main RAM unit
wire ramwe;

// FIFO status signals
wire full, empty;

// FIFO control signals
wire rdreq;

reg wrreq;

reg tstart;

reg [1:0] state;
reg [10:0] ram’addr;
reg [7:0] buff;

assign ramwe = (state == UPDATEL | | state == UPDATE2);
assign rdreq = (state == UPDATEL) ;

wire [7:0]ramq;
ram test (
ram addr,
ramwe,

18

30

40

50

60

data2ram,
ramq) ;

// 15232 reciever module
rs232c¢’receiver rs232r(.clk(clk), .rxdin(rxd), .data(rdata), .ready(rready));
// transmit module: dumps transmitted data right back

rs232c¢ transmitter rs232t(.clk(clk), .txdout(txd), .data(rdata), .start(tstart),

// FIFO
fifo gfifo(
.data(buff) ,
.wrreq (wrreq) ,
.rdreq (rdreq) ,
.clock (clk) ,
//.sclr(reset), // available on quartus, not on max
.q(data2ram) ,
Afull(ful),
.empty (empty)) ;

always @(posedge clk) begin

if (reset) begin
state <= IDLE;
buff <= 0;
ram addr <= 0;

end

else begin
buff <= rready 7 rdata : buff;
// data (buff) is ready the clock cycle after the 'rready’ pulse
// we use a register for wrreq to make a pulse for write request
// to FIFO
wrreq <= rready;
tstart <= rready; // for readability

end

// transition diagram

case (state)
UPDATEL: state <= UPDATE2;
UPDATE2: state <= (Tenable | | empty) ? IDLE : UPDATET;
IDLE: state <= (enable && “empty) ? UPDATEI1 : IDLE;

endcase

// outputs

19

70

.busy (tbusy))

80

90

100

5.7

5.8

5.9

if (state == UPDATE2) ram’addr <= ram’'addr + 1;

end

endmodule

step2pulse.v

module step2pulse(clk, in, out);
input in, clk;
output out;
reg r;
assign out = (in && 1) ;
always @ (posedge clk) r <= in;
endmodule

sync8.v (8-bit Synchronizer

module sync8(clk,in[7:0],out[7:0]);
input clk;
input [7:0] in;
output [7:0] out;

reg [7:0] out;
reg [7:0] temp;

always @ (posedge clk)
begin
temp [7:0] <= in[7:0];
out [7:0] <= temp[7:0];
end

endmodule

sync.v (Synchronizer

module sync(clk, in, out);
input clk, in;

output out;

reg rl, out;

always @(posedge clk) begin

rl <= in;
out <=rl;
end

20

110

10

endmodule

5.10 theta counter.v (Timing Component)

module theta counter (clk, start’ counter, theta period, change'theta) ;

input clk,start counter;
input [23:0] theta period;
output change'theta;

reg [23:0] counter'theta period;
reg change'theta;
reg change'thetareset;

always @ (posedge clk)
begin
if ((& (Tcounter'theta'period)) | | start’ counter)
begin
counter theta period <= theta period;
change'theta'reset <= 1;
change'theta <= change'thetareset ? 0 : 1;
end
else
begin
counter theta period <= counter'theta period - 1;
change'theta <= 0;
change'theta'reset <= 0;
end
end

endmodule

5.11 theta divider.v (Timing Component)

module theta'divider (clk,sync pulse, theta'select,
theta period, start counter) ;

input clk, sync'pulse;
input [7:0] theta'select;
output [23:0] theta period;
output start counter;

21

10

10

20

wire [7:0] theta'remainder;

// at 20 fps with a 10Mhz clk, there will be about 500,000 clk periods per
// rotation at 1 fps with a 10Mhz clk, there will be about 10,000,000 clk
// periods per rotation

reg [23:0] counter; // this is equivalent to 2°14 = 16384 max.

reg [23:0] rotation period;

reg start counter;

always @ (posedge clk)
begin
if (sync'pulse)
begin
rotation period <= counter + thetaremainder;
counter <= 0;
start counter <= 1;
end
else
begin
counter <= counter + 1;
start’ counter <= 0;
end
end

divider'p24 divider'c(rotation period,theta’select,
theta period,theta remainder) ;

endmodule
timing fsm.v (Timing Module)
module timing fsm (clk,sync'pulse, theta’'select, theta,start theta) ;
input clk, sync'pulse;
input [7:0] theta'select;

output [7:0] theta;
output start'theta;

wire [23:0] theta'period;
wire [7:0] theta’'select’s;

sync sync 'sync pulse (clk,sync pulse, sync pulse’s) ;
sync8 sync8theta'select (clk, theta'select , theta'select’s) ;

22

10

20

30

10

pulse pulse’sync pulse
(clk,sync'pulse’s, sync'pulse’sp) ;

theta'divider theta’divider'c
(clk,sync'pulse’sp, theta'select’s, theta period , start counter) ;

theta'counter theta counter'c 20
(clk,start counter, theta'period,change theta) ;

divider'256 divider'c
(8°d255,theta_select_s,theta_increment,theta_remainder);

reg [7:0] theta;
reg start_theta;
reg delay_theta;
reg [7:0] theta_reset_counter;
30
always @ (posedge clk)
begin
delay_theta <= (!(theta_reset_counter >= theta_select_s))
? change_theta : O;
start_theta <= delay_theta;
theta_reset_counter <= start_counter
? 0 : change_theta
7 theta_reset_counter + 1 : theta_reset_counter;
if (theta_reset_counter==0)

theta <= 0; 40
else
if (!(theta_reset_counter >= theta_select_s) && change_theta)
begin
theta <= theta + theta_increment;
end
end
endmodule

5.13 decoder (LED Driver Controller

// Clock rate: 10 Mhz

// Protocol: [start bit] [data(7:0)]

// Optional parity bit may be used as an extension
// [start bit] duration is 5 clock cycles

23

module decoder(clk, rst, sin, ct, reset'clk, ledbus, lenable);

input clk, rst, sin;
input [6:0] ct;
output reset clk;
output [7:0] ledbus;
output lenable; // Latch counter enable

// each byte transmission lasts 85 ticks
// we sample 5, 15, 25, 85, 45, 55, 65, 15
// from encoder

// parameter BIT'T = 10;

// parameter START'T = 5;

reg [7:0] ledbus;

reg lenable; // serves as lenable
reg idle; // serves as clock reset
assign reset'clk = idle;

always @ (posedge clk) begin
// lencoder signal is a pulse
lenable <= 1rst 7 0 : (ct == 7°d84) 7 1

if (rst)
idle <= 1;
else begin
if(idle && sin) begin

. 0;

idle <= 0; // start bit recieved

ledbus <= 0;
end
if ("idle) begin
case(ct)
9: ledbus[7] <= sin;
19: ledbus[6] <= sin;
29: ledbus[b] <= sin;
39: ledbus[4] <= sin;
49: ledbus[3] <= sin;
59: ledbus[2] <= sin;
69: ledbus[1] <= sin;
79: ledbus[0] <= sin;
default: ; // do nothing

24

10

20

30

40

5.14

5.15

endcase
idle <= (ct ==7’d84) ? 1 : 0;
end
end

end
endmodule

led clock.v (LED Driver Component)

module led_clock(clk, rst, reset_clk, select, counter);

input clk, rst, reset_clk;
output [6:0] counter;
output [2:0] select;

reg [6:0] counter;
reg [2:0] select;

always @ (posedge clk)
begin
if (rst || reset_clk)
counter <= 0;
else
counter <= counter + 1;
select <= rst ? 3°b111 : (counter == 7°d84) 7 select + 1
end

endmodule

led_enable.v (LED Driver Component)
module led_enable(clk,rst,lenable, select, enableout);
input clk, rst, lenable;
input [2:0] select;
output [7:0] enableout;

reg [7:0] enableout;

always @ (posedge clk)
begin

25

: select:

50

10

10

if (rst)
enableout <= 0;

else

case (select)

0:
1:

2: enableout[2] <= lenable;

enableout[0] <= lenable;
enableout[1] <= lenable;

3: enableout[3] <= lenable;
4: enableout[4] <= lenable;
5: enableout[5] <= lenable;
6: enableout[6] <= lenable;
7: enableout[7] <= lenable;
endcase
end
endmodule

26

20

