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Abstract: Rodent Revenge in Space is a video game, featuring Tim the beaver. Tim 
moves around the virtual world, where he encounters various enemies and obstacles. 
When facing an enemy, Tim throws logs at him. Tim will lose a life if an enemy injures 
him, but can gain lives by picking up powerups. The three modules in the game are the 
game controller unit, video controller unit, and the resizer. The game controller interfaces 
with the user and coordinates with the video controller unit to advance the game 
accordingly. The video controller unit outputs the images onto the screen and interfaces 
with the resizer in order to output the correct enemy size frame onto the screen. The 
resizer uses interpolation and decimation to shrink the enemy frame into different sizes. 
In conclusion, the project was a satisfying and extremely informative experience. 
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1 Video Game System Overview 

This project will consist of a video game named Rodent Revenge in Space. The 

main character, Tim the beaver, is lost in outer space. Tim is trying to find the wormhole, 

which will lead him back to MIT. Along the way, many aliens will try to stop Tim from 

completing his journey, because they want to use his intelligence to take over the 

universe. Tim can only counter the aliens by throwing deadly wooden stakes at them. 

Initially, Tim has three lives, but if he is injured by an alien, he loses a life. However, if 

Tim has less than three lives and he collects enough energy drinks, he can regain the lives 

he lost. 

 The game will be configured so that the user’s perspective coincides with Tim’s 

perspective. The user will have access to six controls to manipulate the game: 

1. Start button: initiates the game. If the user has pressed quit once, then pressing start 

would cancel the quit. 

2. Up button: moves Tim forward through space. 

3. Left Button: moves Tim sideways left across the screen 

4. Right Button: moves Tim sideways right across the screen 

5. Shoot Button: Triggers Tim to shoot a stake from where he is located on the screen 

The screen display will be divided into several frames, which will each have x, y, 

and z coordinates. The x and y coordinates denote the horizontal and vertical position of 

the frame on the screen, respectively. The z coordinate determines which frame will take 

precedence on the screen. The frames will be of the following description: 
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1. Tim’s frame: A frame containing a back view of Tim’s head. This frame will 

be positioned at the bottom of the screen, and will have the highest z value, 

meaning it will take the most precedence on screen. 

2. Background frame: This frame is static, has the lowest z value, and consists of 

a space backdrop. 

3. Road frames: There will only be one road frame on screen at a time, 

depending upon Tim’s forward motion. Each road frame will lie centrally in 

the screen and will have a higher z value than the background frame. 

4. Enemy frames: These frames will move along the road frame and their size 

depends on the enemy’s distance from Tim. Their z value will be higher than 

the previous frames. 

5. Log/bullet frames: The log/bullet frames will be moving along the road frame. 

These frames will have the second highest z value. 

6. Energy frame: This frame will be moving with the road frame, but it will have 

a higher z value than the road frame. 

7. Score/Lives frames: These frames will be at the top of the screen and will 

have a z value higher than that of the background frame. 

 The game will be subdivided into three sections of roughly the same complexity: 

a game controller (Lynne), a decimator (Naoshin) and a video display module (Matt). A 

general block diagram for the system is shown below: 

Game Controller Unit: 

The game controller module handles the game’s logistics. The game controller is 

in fact an FSM which has various states depending on the inputs. The game controller’s 
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main job is to decide which frames are going to be used in the video display at each time-

slice. The time-slice’s value will be chosen to simulate the game smoothly. The game 

controller will have an algorithm which decides when the alien will come on screen, and 

its trajectory towards Tim. The information associated with the alien will take form of 

output size which will be passed on to the Decimator. Size denotes how big the alien 

frame should be on screen. 

Depending on the input of the user, the game controller will move Tim 

accordingly. The controller will keep track of the score and of Tim’s lives. In addition, 

the game controller handles the timing and trajectory of the stakes and alien’s photon 

bullets. Therefore, the game controller will output each frame’s x, y, and z coordinates to 

the frame handler. The game controller will also output to the frame handler the frames 

which will be used in the next scene. In addition, the game controller will receive inputs 

from the frame handler indicating whether a bullet frame overlaps with the beaver frame, 

or if the log frame overlaps with the enemy frame. The game controller will then either, 

respectively, decrement the beaver’s life or kill the enemy and increase the score of the 

beaver. After the beaver loses all lives, the game controller would signal the game is 

over.  

Resizer: 

The resizer changes the size of the enemy frames. The resizer receives input from 

the game controller denoting the size of the frame to be passed on to the frame handler. 

The resizer has access to a fixed-sized image which will then filter and downsamples at a 

rate specified by the game controller. The sampled image will be stored in the resizer’s 

 3



ROM. It outputs an address range denoting where it will store the picture to the frame 

handler.  

Video Controller Unit: 

The Video Controller is divided into several submodules: Frame Handler, Sync 

generator, video memory, and the DAC.  

Frame Handler:  The frame handler receives an output from the Sync generator 

denoting the coordinates of the next pixel to be drawn. The frame handler will then check 

each frame to see if it contains the indicated pixel. If the pixel is contained in more than 

one frame, the handler will check the z values of those frames to see which frame has 

precedence. It will then output the color value of the pixel in that frame to the screen.  

Sync generator: The sync generator controls the how the fast the electron beam 

sweeps across the screen. There are two sync signals: vertical and horizontal sweep. It 

outputs to the frame handler the coordinates of the next pixel to be drawn. The video 

memory stores the frames and outputs them to the frame handler, and the DAC converts 

the pixels from digital to analog. 
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Figure 1: Overall Block Diagram for Video Game System 
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2 Subsystem 1: Game Controller Unit (by Lynne Salameh) 
 

The game controller handles the user input and the progress of the game. It is in a 

sense a simple microprocessor that is programmed with instructions that simulate the 

game by choosing which sprites are going to be present on screen next. This functionality 

is captured by the sprite’s sprite_no, an index needed to differentiate between the 

different sprites, and its location on screen given by xcoor and ycoor. The information 

about the sprites is transmitted to the Video Controller as soon as it is ready. In addition, 

the controller determines the size of the alien sprite which needs to be passed on to both 

the Resizer and the Video Controller.  The game controller is subdivided into three main 

submodules: PC module, Instruction Decoder module and the Register FSM module. A 

512 x 20 built in  MegaWizard ROM was used to store the instructions, and three 32 x 8 

MegaWizard RAM’s were used as the three register files needed to store sprite_no, 

x_coor and y_coor. The game controller receives several control signals from the Video 

Controller which allow it to switch between processing mode and outputting the sprites, 

and these signals are frame_done, triggering the start of the processing cycle, and a 

start_sprite signal, triggering the sprite output cycle.  A block diagram of the over all 

Game Controller Module can be seen in Figure 2.1. on the following page.  

Java was used to write a compiler, which would take in an instruction and 

transform it into a 20 bit binary line, which was written to a .mif file.  
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2.1 PC Module 
 

The PC module is in fact a simple FSM that controls the addressing of the 

instruction memory. The address is 9 bits, and is stored in a register called PC, or 

program counter.  The PC determines which instruction will be read next. The PC module 

receives several control signals from the Instruction Decoder, in addition to the 

frame_done signal from the Video Controller. The frame_done signal indicates the 

begging of the processing cycle, and moves the FSM from state_idle to state_busy, as can 

be seen in the State Transition Diagram in figure 2.2.  In state_busy, the PC FSM takes 

into consideration several control signals : pcsel, enable and stack_sel from the 

Instruction Decoder. The pcsel signal determines what value the PC register will assume 

next and therefore which line to be read from the Instruction Memory. The PC module 

also implements a two element stack, in the form of the registers TOS and NOS. These 

are loaded when they receive the enable signal from the Instruction Decoder.  

There are five different values for pcsel, which are: 

1. pcsel = 0 : The program is advancing normally, and therefore the next instruction 

to be read is the current instruction + 1, i.e. PC + 1. 

2. pcsel = 1: This control signal causes the PC to branch to a new value, and 

therefore loads the value of the branch from the Instruction Decoder into the PC 

register. This in effect causes the address of the instruction memory to jump from 

on value to the other. 

3. pcsel = 2 : Facilitates calls to instruction lines. A call causes the PC to jump to a 

new value, while at the same time storing the current value + 1 into a stack. The 
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signal call from the Instruction Decoder determines the new address, and is 

loaded into the PC register.  

4. pcsel = 3: Triggers a return, that is, the value of TOS is loaded into the PC 

register, and therefore the instruction that is read returns to the instruction after 

when the most recent call was made. 

5. pcsel = 4: Maintains the current PC and does not change it. This is needed during 

the intermediate states of the Instruction Decoder which will be discussed later. 

As for enable, it is three bit, and it can take 3 meaningful values: 

1. enable[0] = 1: Loads PC +1 into the top of the stack TOS. 

2. enable[1] = 1: Loads the value of TOS into NOS the rest of the stack. 

3. enable[3] = 1 : Loads the current PC into TOS, which is needed when an 

interrupt occurs. 

Similarly stack_sel can take two values: 

1. stack_sel = 0: Allows PC +1 to be loaded into TOS. 

2. stack_sel = 1: Allows the value of NOS to be loaded into TOS. 

The control signals described enable PC + 1 to be pushed onto the top of the stack, 

TOS, on a call. In other words stack_sel = 0 and enable  = 3 causes the TOS to be loaded 

with PC + 1 and NOS would take the value of the old TOS. On the other hand, stack_sel 

is set of 1 on a return, which, combined with setting pcsel to 3 and enable to 1 pushes the 

return address of the TOS and loads it into the PC. When enable[2] = 1, indicating that 

an interrupt has occurred, the TOS will be loaded with PC rather than PC + 1, NOS is 

loaded with the old value of TOS and therefore an interrupt functions in a similar way to 

call, except for that PC is loaded into TOS. 
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During the busy state, a stop signal from the Instruction Decoder would cause the PC 

to revert back into its idle state, and await from a new frame_done signal from the Video 

Controller. A reset_apply from the Instructon Decoder causes the PC FSM to revert to 

the reset state, from which it would go to the busy state on receiving a frame_done signal 

from the Register FSM.  

 

state_idle

state_reset

state_busy

frame-Done = 1

stop = 1

reset_apply = 1

reset_apply = 1

reset_done = 1

  
Figure 2.2: State Transition Diagram for PC FSM 

 
 

2.2 Instruction Decoder 

The Instruction Decoder processes the 5 user inputs that signify forward, right, 

left, shoot and reset. This 5 bit input in the form of user_in is first synchronized to match 

the 12 MHz clock the Game Controller runs on. The Game Controller also takes the 20 

bit instruction outputted from the Instruction Memory, and determines which action to 

take next depending on the 4 bit operation code at the beginning of the instruction. The 
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action is in the form of several control signals to be sent to the other modules. The rest of 

the 20 bit instruction contains relative information that will be used by the decoder to 

complete the operations described by the opcode, such as the address to be read or written 

to in the Register RAMS (reg_no [7:0]), the register which is to be read or written to (i.e. 

whether it is sprite_no, xcoor or ycoor, handled by the signal reg_no[1:0]), call and 

branch addresses, which input to look at, and the internal register number for which 

results of comparisons are stored. The Instruction Decoder reserves four internal registers 

that will store the values of comparisons and these are set by operations such as 

COMPEQ, COMPLE, COMPEQC, and COMPLEC. The signals branch and call  are 

always set to be equal to instruction[8:0]. Table 1 summarizes up all the opcodes and the 

information captured by the remaining 16 bits of the instruction. 
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Table 1: Opcodes and their Description 
Opcode Instruction Description 

0000 ASSIGN Assigns a value equal to instruction[7:0] to the register 
memory line with address reg_no[15:9] 

0001 ADDC Reads in the value of the register memory line with address 
instruction[15:9] and writes back onto that address the value 
of the memory line plus instruction[7:0] 

0010 BRANCHCOND Compares the synchronized input control to 
instruction[15:11] and causes a branch if they are equal 

0011 COMPEQ Compares the value of the register file at address reg_no = 
instruction[15:9] with the value of the register file at address 
reg_no= instruction[8:2] and sets the internal registers 
specified by instruction[1:0] to be 1 if the values are equal, 0 
otherwise 

0100 BEQ Causes a branch to instruction[8:0] if the internal register 
specified by instruction[15:14] equals 0 

0101 CALL Causes a call to instruction[8:0] 
0110 RETURN Causes a return 
0111 STOP Makes the stop signal that is an input to the PC and Register 

File modules go high for 1 clock cycle 
1000 SIZE Sets size to be equal to instruction[2:0] 
1001 COMPEQC Compares the value of the register file at address reg_no = 

instruction[15:9] with a literal of value instruction[8:2] and 
sets the internal registers specified by instruction[1:0] to be 1 
if the values are equal, 0 otherwise 

1010 COMPLE Compares the value of the register file at address reg_no = 
instruction[15:9] with the value of the register file at address 
reg_no= instruction[8:2] and sets the internal registers 
specified by instruction[1:0] to 1 if the former value is less 
than or equal to the later.  

1011 COMPLEC Compares the value of the register file at address reg_no = 
instruction[15:9] with the literal of value instruction[8:2] 
and sets the internal registers specified by instruction[1:0] to 
1 if the former value is less than or equal to the later.  

1100 AND Computes the value of the internal registers specified by 
instruction[15:14] AND the value of the internal register 
specified by instruction[13:12], placing the result in the 
internal register specified by instruction[11:10] 

1101 OR Computes the value of the internal registers specified by 
instruction[15:14] AND the value of the internal register 
specified by instruction[13:12], placing the result in the 
internal register specified by instruction[11:10] 

1110 EQIN Sets the internal register specified by instruction[12:11] to 1 
if control specified by instruction[15:13]  is equal to 
instruction[10] 

1111 BNE Causes a branch to instruction[8:0] if the internal register 
specified by instruction[15:14] is not equal to  0 
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Since the register file memories can only be read and written to at separate times, 

several states were constructed in order to allow for this functionality, as shown in Figure 

2.3, which is a state transition diagram of the decoder. The instruction decoder remains in 

the idle state till it receives a frame_done signal from the Video Controller, indicating 

that it needs to transition to state_op, where the begging of the processing occurs. In state 

op, the opcodes are used to determine which state will be chosen next. In cases where 

there will be no accesses to memory, i.e. for operations such as COMPEQ and CALL, the 

control signals are set to the correct values, and the FSM transitions to state_incpc, in 

which control signals are set to increment the PC in the PC module according to the 

opcode. Other operations such as ASSIGN and ADDC, require writing onto the memory, 

in which case, whereas operations such as COMPEQ require reading from two memory 

locations. In order to facilitate these operations, several read states for the two reads 

required were added to the FSM, a write state where wr would be high for one clock 

cycle, and a process state acts as an intermediate and chooses to continue onto the write 

state or the state_incpc. Assigning the xcoor and ycoor memory locations to a non-zero 

value when the corresponding sprite_no location is 0 has no effect on displaying the 

sprites, since the Video Controller ignores the sprites with sprite number 0. Therefore 

assigning these registers to certain values was used when writing the game code in order 

to use several local variables.  
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state_interrupt

frame_done = 1
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op

 

Stop == 1 

Figure 2.3: state transition diagram for the Instruction Decoder. All states lead into 
the reset state when reset_apply is high. Similarly, all states lead into state_interrupt 

when interrupt_valid and control[4:1] are high 
 

The call operation requires the enable signal for NOS to go high before the enable 

signal for the TOS, at the same time keeping the PC constant for an extra clock cycle to 

avoid timing issues. Adding two extra states wait_enable and wair_call allows for this 

behavior to occur. These states are only accessed during a call procedure.  

On reaching state_inpc, a stop operation from the Instruction Memory would cause the 

FSM to revert back to state_idle, and wait for the next frame_done signal. Otherwise, the 

state_incpc would lead back into state_op on the next clock cycle, freezing the pc by 

setting pcsel  to 4. Two deviations may occur from this standard flow: 
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1. A reset is pressed, and therefore reset_apply is high, which triggers all the states 

to revert to state_reset. In state_reset, the PC is frozen by selecting pcsel = 4 and 

data_in is set to 0,  until a reset_done signal is received from the Register File 

FSM, indicating that the memories have been blanked and that it is possible to 

proceed to state_op. 

2. An interrupt occurs, i.e. the interrupt_valid signal from the Register FSM, 

occurring a clock cycle after the frame_done signal, coincides with a non-zero 

value for control[4:1], in other words, the user has pressed one or more of the 

buttons. An interrupt can occur in any state, and this causes the FSM to jump to 

state_interrupt, where control signals are chosen so as to force the PC to jump to 

location 461 of the memory, the location of the interrupt handler code. The 

control signals also ensure that the PC is stored in the TOS. 

2.3 Register FSM 

The Register FSM controls the reading and writing onto the three 32 x 8 RAM’s that 

contain information about the sprite_no, xcoor and ycoor of the sprites to be used in 

the current frame of the video memory. The Register FSM has two main states, as 

shown in Figure 2.4, and these are state_process and state_loop. An intermediate 

stage between these two processes occurs as state_waitforsprite, in which the FSM 

waits for either a start_sprite signal from the Video Controller, causing it to transition 

to state_loop, or a frame_done signal, causing it to return to state_process.  

1. state_process: in this state the Instruction Decoder drives the address line using 

reg_no, whose lowest 2 bits are used to determine which of the three memories to 

be written or read from. In this state, the signal wr is translated into the separate 
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write enables for each RAM, depending on the value of reg_no[1:0]. Similarly, 

data_in is the value from the Instruction Decoder that is written to one of the 

memories, and data_out is the value read from one of the memories, which is 

chosen by reg_no[1:0]. During state_process, the control signal process_done 

which is outputted to the Video Controller goes low as long as the FSM is in this 

state, indicating that the Game Controller is processing instructions from the 

Instruction Memory. As soon as a stop signal is received, the FSM would revert to 

state_waitforsprite.  

2. state_loop: In this state, and internal counter which counts from 0 to 31 drives the 

address lines of the three RAM’s at the same time. The control signal 

ready_sprite goes high as long as the FSM is in this state. The outputs of the three 

RAM’s, in the form of xcoor, ycoor and sprite_no, are transmitted to the Video 

Controller. The information is transmitted in 32 cycles, after which the FSM 

returns to state_waitforsprite. 

On receiving a reset_apply signal from the Instruction Decoder, the FSM would 

revert to state_reset, in which the counter drives the RAM’s once again, but this time 

the write enable signals of all three RAM’s is set to high, and a zero valued data_in is 

used to blank the RAMs. 
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   Figure 2.4: State Transition Diagram for Register FSM 
 
 
2.4 Testing and Debugging 

The early stages of debugging incorporated unit testing of each separate module, 

and used Max II plus’ waveform editor to simulate the results of the module. For the 

Instruction Decoder module, each opcode was tested separately in the waveform editor in 

or to determine whether it indeed provided the correct functionality. After completing all 

the smaller modules, integration testing was performed on the top level module, 
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controller. A simple program was written using the Java compiler, which only assigned 

several frames and provided an interrupt handler for the forward input. The Controller 

module was simulated using this program in the Instruction Memory, and the 32 cycle 

output to the Video Controller was checked to see whether it contains the correct 

information about the sprites. Wire signals were temporarily converted into outputs in 

order for them to appear in the waveform editor.  

A had added a few more opcodes after I had done testing Instruction Decoder, and  

regression testing was performed through more simulation of the Instruction Decoder 

module to double check whether it still provided the correct functionality.  

After the top level Display module was constructed, combining the Game 

Controller module and the Video Controller into one module on a single FPGA, the vsync 

and hsync values were changed to smaller ones for the purpose of simulation, and the 

module was simulated to ensure the correct functionality. The Display module was then 

loaded onto the FPGA and was tested directly by examining the output to the screen. By 

examining the screen, several bugs were detected, and to help with the debugging 

process, the 9 bit pc was converted to an output and connected to the logic analyzer, 

which was triggered on the frame_done signal. An illegal loop which occurred when 

applying a STOP instruction followed by a RETURN was discovered and the higher 

order bits of the enable signal were also connected to the logic analyzer to study their 

behavior. 

 

 

 

 18



3 Subsystem 2: The Resizer (by Naoshin Haque) 
 
3.1 Resizer System Overview 

 The purpose of the resizer is to take an original 64x64 pixel image of the alien and 

either replicate it or shrink it down to five different sizes. The six different sized images 

that can be produced are 64x64, 43x43, 32x32, 22x22, 16x16, and 11x11 pixels. In order 

to achieve this, interpolation and decimation methods are used on the original image. The 

image can be interpolated by a factor of 1 or 2 and decimated by a factor of either 1, 2, 3, 

4, or 6. See Figure 3.1 on page 21 for an overall block diagram of the resizer subsystem. 

 The original colored image is stored in an external 32Kx8 Flash Memory, where 

only 4097 lines of memory are taken up. The first 4096 lines hold the image, and the 

4097th line is all zeros. The resizer receives a constant 3-bit size from the video controller 

unit. This size is used to look up the interpolation and decimation factors in a lookup 

table. After the size has been valid for at least one clock cycle, the resizer receives a load 

enable signal, called le_size, from the video game controller unit, signaling the resizer to 

begin its processing. 

 Once the resizer starts its processing, it goes through three or four stages, 

depending on the decimation factor. The FPGA sends control signals and addresses to all 

of the ROMs and the 32kx8 external RAM, accordingly. In addition, a tristate bus is 

shared between the FPGA, the RAM, and the ROM for the 8-bit data.  The first stage is 

copying the original image from the ROM to the RAM or storing an upsampled version 

of the image in the RAM if the interpolation factor is 1 or 2, accordingly. Once the image 

is stored in the RAM, the ROM is no longer used for any calculations. The second stage 

is where the image stored in the RAM is interpolated, while the third stage is decimation 

 19



on this interpolated image. If the decimation factor is 4 or 6, the resizer goes into its 

fourth stage, so that it can perform decimation on the already decimated image. 

 The color being used for the image is 64-bits, meaning there are only four shades 

of intensity per R, G, and B. When reading from the RAM to do the calculations, the 8-

bit data is separated into 2-bits for R, 2-bits for G, 2-bits for B, and the last 2-bits are 

discarded. The arithmetic unit is triplicated so that two-dimensional convolution can be 

performed on the R, G, and B in parallel. The two-dimensional convolution consists of 

looking at a 3x3 matrix around the appropriate R, G, or B component of the pixel and 

multiplying these 9 values with the appropriate filter coefficients. The filter coefficients 

are stored in a 64x8 ROM. The 9 products are accumulated and sent through a range to 

select the 2-bits for R, G, and B. These bits are then concatenated with 2 zeros and sent to 

the tristate bus to be written back to a different portion of the RAM. 

 Once all of the calculations for the two-dimensional convolution are completed 

and the final data has been written to the RAM, the video controller unit reads from the 

RAM. The addresses to the RAM, which are sent from both the resizer module and the 

video controller module, are put through four 8-to-1 multiplexers, while the data bus for 

the RAM is put through two tristate drivers. The output enable signals to the multiplexers 

and the tristate drivers are controlled by the video controller unit. Once the video 

controller unit is done processing, it once again sets the output enables to their correct 

values to enable the resizer to start its processing once again. 
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Figure 3.1: Overall Resizer Block Diagram 

3.2 Resizer System Module Descriptions and Implementation 

 The resizer system consists of two main modules, which are the major finite state 

machine and the minor finite state machine (FSM). The minor FSM can be in four 

different stages, which are copying, interpolating, decimating, and decimating twice. The 

major FSM sends the appropriate control signals to tell the minor FSM which stage to be 

in. The minor FSM sends busy signals back to the major FSM, to denote when it is still 

processing. Using these communication signals, the major and minor FSM are able to 

coordinate such that the two-dimensional convolution is performed correctly. 
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3.2a Major FSM 

 The main purpose of the major FSM is to control which of the four stages the 

minor FSM is in. These four stages include copying, which includes both copying and 

upsampling, if necessary, interpolation, decimation, and decimation twice if needed. The 

major FSM starts off in the idle state, which it also returns to any time a reset button is 

pushed. The major FSM remains in the idle state until it receives a load enable signal 

from the video controller unit. It then sets start_copy to equal le_size, which is just high 

for one clock cycle. This tells the minor FSM to go to its copy stage. The major FSM 

then transitions to the copy state. See Figure 3.2 on page 24 for the major FSM state 

transition diagram. 

 Once in the copy state, the major FSM remains there as long as it receives a high 

busy_copy signal from the minor FSM. This busy_copy signal denotes that the minor 

FSM is still processing. Once the busy_copy signal goes low, the major FSM goes to the 

wait1 state, where it remains for one clock cycle. In this state, the major FSM sets the 

start_int signal to high, indicating that the minor FSM should now go into its 

interpolation stage. The major FSM then transitions to the interpolation stage, where it 

remains as long as it receives a high busy_int signal from the minor FSM. Once the 

minor FSM is finished performing the interpolation, it sends a low busy_int signal to the 

major FSM. Upon receiving this signal, the major FSM transitions to the wait2 state. 

 The wait2 state has a duration of one clock cycle and is also the state in which the 

major FSM sets start_dec1 to high. The major FSM then transitions to the dec1 stage, 

which is where the minor FSM outputs a high busy_dec1 signal as long as it is in this first 

decimation stage. After receiving a low busy_dec1 signal, the major FSM must look up 
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the decimation factor by using the size lookup table before progressing. If the decimation 

factor, M, is equal to 1, 2, or 3, the major FSM transitions to the idle state, where it 

remains until it receives another high load enable signal from the video controller unit. 

However, if M is equal to 4 or 6, the major FSM goes to stage wait3, where it sets 

start_dec2 to high. After staying in the wait3 state for one clock period, the major FSM 

transitions to the dec2 stage. 

 The major FSM continues to stay in the dec2 state as long as it receives a high 

busy_dec2 signal from the minor FSM. Once the minor FSM is finished doing the second 

decimation, it sends a low busy_dec2 signal to the major FSM. The major FSM then 

transitions back to its idle state, where it will remain until it receives another high load 

enable signal. When the major FSM has returned back to the idle state, it denotes that one 

full resizing has occurred, meaning that the final replicated or shrunken image has been 

written into the RAM, and is waiting to be read by the video controller unit. 

 Another signal in the major FSM module is the oe_driver signal, which is used as 

an output to the minor FSM. While the major FSM is in its idle state, the video controller 

unit must be able to read from the RAM, so the oe_driver signal is low only during this 

time to indicate this. Therefore, when the minor FSM is in its idle state, it will use the 

oe_driver signal as an input to set the control signals of the RAM accordingly.  
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Figure 3.2: Major FSM State Transition Diagram 
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3.2b Minor FSM 

 The main purpose of the minor FSM is to perform all of the operations necessary 

to take the 64x64 image and resize it accordingly. The minor FSM can be in four 

different modes, which are the copy mode, the interpolation mode, the decimation mode, 

and the second decimation mode. The minor FSM has nine states, whose general state 

transition diagram can be seen in Figure 3.3 on page 28. 

 The minor FSM is able to receive four different start signals from the major FSM. 

Upon receiving one of these signals, the minor FSM will act accordingly by going to the 

correct mode. In addition, the minor FSM is the module that outputs the 15-bit addresses 

to the RAM and the ROM. The minor FSM also outputs the 6-bit address to the 64x8 

filter coefficients ROM, which was generated using the Mega-Wizard, and is instantiated 

within the minor FSM module. 

 The minor FSM also receives a 3-bit size from the video controller unit, which it 

uses to look up the interpolation factor, L, and the decimation factor, M, in a lookup 

table. Upon reset, the minor FSM goes to its idle state, where all of the initial values are 

set. The minor FSM remains in the idle state until it receives a start signal from the major 

FSM. If this start signal is start_copy, the minor FSM sets busy_copy to high and 

transitions to the read_rom state. In this state, the minor FSM reads from the appropriate 

line of the ROM, according to the assigned address. If the interpolation factor is 1, the 

exact image is copied from the ROM to the RAM, so the 4097th of the ROM is never 

used. However, if the interpolation factor is 2, an upsampled image is stored into the 

RAM. This upsampled image contains zeros in every other row and zeros in every other 

column, so the ROM reads from the 4097th line for quite some time. 
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 The minor FSM stays in the read_rom state for one cycle and then transitions to 

state wait1. State wait1 lasts for 1 clock cycle and sets the control signals so that the data 

read from the ROM can be written to the RAM. The data pins of the external ROM are 

connected directly to the data pins of the external RAM, which are also connected to the 

FPGA. The minor FSM writes the data to the RAM in state write_ram1. After one clock 

period, the minor FSM transitions to the wait2 state. In this state, the minor FSM checks 

to see if all of the pixels of the image have been copied or upsampled depending on the 

interpolation factor. If this process is not done, the minor FSM will transition back to the 

read_rom state to read and copy another pixel from the ROM to the RAM. However, if 

the process of copying is complete, the minor FSM goes to the idle state, where it 

remains until it receives another start signal from the minor FSM. The minor FSM only 

sets busy_copy to low when it returns to the idle state. 

 The minor FSM goes through a very similar process when it receives either a high 

start_int, start_dec1, or start_dec2 signal. After receiving either of these signals, the 

minor FSM sets the appropriate busy signal to high. This busy signal remains high until 

the FSM returns to the idle state again. After any of these three start signals goes high, 

the minor FSM transitions to the read_ram state. The minor FSM remains in this state for 

one clock cycle and reads from the RAM according to the address assigned. 

 The minor FSM then transitions to the wait3 state, where it stays for one clock 

period. There are three multipliers, which are made by the Mega-Wizard, instantiated 

within the minor FSM module. Each of these multipliers take in two 8-bit inputs and 

outputs a 16-bit product. Since all of the numbers are positive, unsigned multiplication is 

being used. The two-dimensional convolution is performed by looking at a 3x3 matrix 
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around the appropriate R, G, or B component of the pixel. This means that each element 

of the matrix must be multiplied by the appropriate filter coefficient, which is read from 

the filter coefficients ROM. Since the R, G, and B are only 2-bits, 6 zeros are 

concatenated to the end of each component. This way higher precision arithmetic is being 

used, because the 6 zeros are considered to be after the decimal point. Then, these 9 

products must be accumulated in order to output the new pixel. Since there are 9 products 

that are 16-bits each, three 20-bit accumulators are used to do the parallel processing of 

the R, G, and B. Therefore, all of the products must be sign extended from 16-bits to 20-

bits. In the wait3 state, the accumulation of the sign extended multiplication products 

takes place. 

 There also many internal counters that are used in the wait3 state, as well as some 

other states in the minor FSM. The first counter, count0, is used to tell which mode the 

minor FSM is in. Since the copying uses different states than the minor FSM, it is not 

included in these modes. The minor FSM is in the interpolation mode when count0=1, 

the decimation 1 mode when count0=2, and the decimation 2 mode when count0=3. 

Another counter, count1 is used to count the entries in each row of the image being 

processed on at the time. Count2 and Count3 are 15-bit counters used to tell the RAM 

what address to read and write to, respectively. Another counter, count4, denotes when 

all of the accumulations are done, and which filter coefficient to use for this element of 

the matrix. Finally, count5 is used for the decimation by 6 stage to see whether an entry 

in the 22x22 matrix is divisible by 22 or not, since the modulo function in Altera was not 

working. 
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Figure 3.3: Minor FSM State Transition Diagram 
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 In state wait3, count4 is always incremented. If count4 does not equal 9, many 

other steps must be taken. First, after staying in the wait3 state for one clock cycle, the 

minor FSM will then transition to the read_ram state. While in the wait3 state, count0 is 

checked to see whether the minor FSM is in the interpolation, decimation 1, or 

decimation 2 mode. Depending on the mode, the minor FSM will check the interpolation 

or decimation factor, so that it can act accordingly. When count4 is equal to 0 through 8, 

it assigns the address of the RAM so that data can be read from the RAM. It also assigns 

the address to the filter coefficients ROM, so that this data can be used in the 

multiplication along with the data from the RAM. 

 At each count4 value, the value of count2 is checked, to see which entry of the 

image matrix it is reading from. If count2 is assigned to a pixel that is placed in either the 

top row, bottom row, most left column, or most right column, then some of the entries of 

the 3x3 matrix surrounding the pixel will not exist in the image matrix. For instance, in 

Figure 3.4 shown on page 30, the entry 0 will only have four existing elements in its 3x3 

matrix, which are the entries 0, 1, 6, and 7. In order to make sure the other products go to 

0, count2 is checked to see whether it is in either the top, bottom, left, or right according 

to the what size image is being looked at the time. If the entry is in either of these 

locations, then the address of the filter coefficients RAM is set to 45, which is a line of 8 

zeros. This way the product is equal to 0, and this value will not be taken into 

consideration during the accumulation. Usually the entries can be checked by seeing if 

count2 falls within a range of values or if count2 is a multiple of some power of 2 

according to the size of the matrix. However, the only size where this was not the case 

was when doing decimation on the 22x22 image. Therefore, the counter count5 needed to 
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be used to check whether the entry was divisible by 22 or not, in order to see where the 

entry was located in the image matrix. 
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Figure 3.4: Example Image Matrix 

 However, if count4 equals 9, this means that all of the calculations in the 

arithmetic unit have taken place, so the data is ready to be written into the RAM. In this 

case, the address to be written into is set to count3 and the control signals of the RAM are 

set appropriately. Since the accumulation results are 20-bits, they must be sent through a 

range to pick 2-bits for R, 2-bits for G, and 2-bits for B. In the write_ram2 state, the data 

output to the tristate bus is then the concatenation for the bits for R, G, and B, with 2 

zeros, in order to comply with the 8-bits that must be written into the RAM. 

 After this data has been written to the RAM, the minor FSM sets all three of the 

accumulators back to zero, in order to make them ready for the next set of calculations. 

The minor FSM then transitions to the wait4 state, where it increments the address of 

where the RAM should be written to, which only takes effect if the minor FSM ever 

transitions back to the write_ram2 state. Also in the wait4 state, the minor FSM first 

checks which mode it is in. Then, according to the mode, it uses either the interpolation 
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and decimation factor to check whether all of the data has been written to the ram by 

checking the value of either count2 or count3. 

 If all of the data has not been written to the RAM, the minor FSM transitions to 

the wait3 state, where it outputs the addresses and correct control signals to the RAM and 

coefficients ROM. This denotes the beginning of another cycle through the arithmetic 

unit, which will perform all of the necessary multiplication and accumulation before 

outputting another pixel of the new image. However, if all of the data for this new image 

has been written to the RAM, the minor FSM returns to the idle state. The minor FSM 

remains in this idle state, until it receives another high start signal from the major FSM. 

3.2c Overall Resizer Module 

 The top level module is a very simple module, which included instantiations of 

both the major and minor FSMs. The inputs to the entire resizer system are the clock, the 

synchronized reset from the game controller unit, the 3-bit size and le_size signal from 

the video controller unit, and the 8-bit data from the RAM. The output of the resizer 

system are the 15-bit addresses to the RAM and the 32Kx8 ROM, and all of the control 

signals to both of these external memory devices. All other signals that were just used to 

communicate internally between the ROM and the RAM were wired within the top level 

module for the resizer system. 

3.3 Testing and Debugging 

 Due to the fact that much time was spent planning the design and implementation 

of the process, only a short time was needed to debug the entire module. First, the major 

FSM was designed and tested. Since this module was quite simple, it worked perfectly on 

the first try. Next, the complex minor FSM was tested. Various things had to be checked 
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for this module. For instance, each of the modes had to do all of the calculations correctly 

and at the correct time, as well as transitioning to the proper state. In addition, the 

counters had to increment in the proper pattern, so that the RAM and ROMs were being 

read from and in the case of the RAM, also written to correctly. After changing minor 

issues, such as the timing of the busy signals and timing of the count4 values, the minor 

FSM worked properly for a general set of filter coefficients. In addition, the top level 

module had to be tested to make sure that both of the modules worked together properly. 

After fixing a few timing issues between state transitions, such as the timing for the 

multiplication between the correct filter coefficient and the correct component of the 

image matrix, the top level module seemed to work correctly. 

 After the resizer seemed to be working for any general filter coefficients, the 

correct filter coefficients needed to be found. A MATLAB program had to written in 

order to find the most accurate coefficients. After this, the resizer needed to be tested to 

see the real-time image that it produced. Since the resizer was not interfaced with the 

video controller unit, there needed to be a way to output the image from the RAM onto a 

screen. 

 At first serial communication was going to be used to read the data from the RAM 

and output it to the computer screen. However, the timing for this was very complicated, 

so instead, the HP Logic Analyzer was used to store data. Using the Logic Analyzer in 

the state mode, a set of triggers can be set such that the Logic Analyzer only stores data 

on certain states. The Logic Analyzer was used to check the state transitions and data that 

was being written to the RAM. While the range was pretty much chosen by normalizing 
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the filter coefficients, it was still helpful to check them and at times even improve them 

by looking at the data from the Logic Analyzer. 

 The stored data in the Logic Analyzer was then saved using a floppy disk and 

converted into the appropriate format to be used in MATLAB. A program was written to 

change the 8-bit data into a 64-bit color image. Using this program, it was demonstrated 

that the resizer module was working as it should be and was able to output 6 different 

sized images of the alien. 

4 Subsytem 3: Video Controller Unit (by Matthew Kwan) 

4.1 Video Controller Overview         

              In the final project, I was in charge of the video controller. The general purpose 

of the video was being able to display each screen of the video game or any function run 

by the game controller. It did this by taking input from the game logic subsystem and 

used it to generate the images displayed to the user. The video component was partially 

designed using 3 external ROMs which stored every sprite. In addition to being an 

important feedback tool for the game controller, the video component was also used as a 

useful debugging tool for both the game controller and the video controller. The video 

system displayed a 64-bit color VGA video at 60 frames per second. The resolution was 

320 by 480. There were 4 major modules. These were the sync_generator module, the 

line_register module, the sprite_table module, and the overview module which pieced 

together the entire video component. The 4 modules were internal, meaning that they 

were written and programmed into the FPGA. See Figure 4.1 for block diagram. 
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Figure 4.1: Block Diagram of Video Controller 
 
 
 
 
4.2 Sprite_table Module 
 
           The sprite_table module was essentially a lookup table. Its inputs included the 

sprite numbers to be displayed onto the screen, and if the sprite number referred to the 

enemy sprite, a certain size would also be inputted. Altogether there were 25 sprites. 

Each sprite has as outputs the memory address where the 1st pixel of a particular sprite is 

located at in the memory, and the sprite’s corresponding width and height. The first two 

bits of the memory address output was dedicated to determining which of the 3 ROMs or 

RAM were being used. Two of the ROM’s contained the 4 road sprites which were each 

240 by 240 resolution. The other ROM contained the background image and all the other 
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sprites, including the powerup and score. Most of the sprites were drawn on Paint, the 

rest were drawn on Coral Draw. The sprites were drawn using RGB values, with 2 bits 

assigned to each color, therefore each color having 4 different shades. The overall 

number of colors was 64. The sprites were then saved as a bitmap file, and formatted 

appropriately using Matlab. Lastly, the sprites were programmed on the chip. The RAM, 

on Naoshin’s board, contained the enemy image whose size could change depending on 

the current stage of the game, and what size the game controller inputted. Because both 

the resampler and the video controller had to use the same RAM, a dual input multiplexor 

was used to figure out when either the resampler or the video controller could access it.  

 
4.3 Sync_generator Module 
 
     The sync_generator module generates the control signals necessary to drive the 

VGA monitor. These signals include the vertical sync, the horizontal sync, the vertical 

blanking, and the horizontal blanking signals. The sync_generator module reads the color 

value of the current pixel from the external ROMs and outputs it to the DAC, which 

consists of a 6-bit register and 6 resistors. The DAC performs the digital to analog 

conversion necessary to display the data on the VGA monitor. Both the game controller 

and the video controller operated on the same 12mhz clock. This was used so that the 

timing controls between the two parts would be in sync.  

The 12 mhz clock was mainly used as a “pixel clock” to display on the VGA 

screen. Every time the clock pulsed high, the current pixel data presented to the 6-bit 

register in the DAC would be latched in and converted to analog through the resistors. 

Each horizontal sync pulse is preceded by a complete line of pixels. Each vertical sync 

pulse is similarly preceded by a complete frame of lines of pixels. Each sync is 
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surrounded by a blanking interval, which consists of the back and front porches, and a 

pulse width. The duration and timing of these pulses depends on the resolution and 

refresh rate of the VGA monitor being used. See figure 4.2 below.  

 
Figure 4.2: Timing durations based on 25 mhz clock, for timing based on 12 mhz clock multiple each number by .48 
 
4.4 Timing Controls 
 
           Every time after the last pixel of a frame is displayed on the screen, the game 

controller gives a frame_done signal. In the overall module, this is when vblankon is 

pulsed high. The game controller then deasserts the process_done signal to tell the video 

controller that it is done processing all the information needed to setup for the next 

picture frame to be displayed onto the screen. When the game controller is done 

processing, which should take much less than 2x10^4 clock cycles (app. the length of 

time vblanking is on), it’s process_done signal then goes high. This signals the 

opportunity for the video controller to give the game controller a start_sprite signal 

whenever h_blankon is high and v_blankon is not high. Whenever the game controller is 

ready, the ready_sprite signal will be asserted high. The game controller will then “spit” 

out 32 sprite numbers and their x and y coordinates that will be in the next frame, with 

each sprite number and corresponding information given during each clock cycle. The 
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video controller uses this information to detect whether the certain pixels of any of the 

sprites the game controller “spits” out are on a given line. Since there are only 25 sprites 

in total and most of them won’t be displayed on a frame at the same time, the game 

controller will input to the video controller a sprite number of zero to signal that there is 

no sprite. After the 32 clock cycles, the game controller’s ready_sprite signal is 

deasserted, and the video controller can start displaying on the screen whenever its 

h_reset signal is pulsed high. The cycle then starts over again when the video controller 

finishes displaying a line of pixels on the screen, and its h_blankon signal is high 

(meaning the video controller gives another start_sprite signal). See Figure 4.3 below for 

timing diagram. 

 

 
Figure 4.3: timing interface. Not in scale 
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4.5 Line Register Module 

           The line register module is primarily used to store all the requisite information 

of each sprite that is supposed to be on a given line on the screen. At each line, the 

overview module (which will be discussed shortly) will check to see whether or not the 

sprites given by the game controller have pixels that are contained in that line. If it is, the 

load_enable signal goes high, and that particular sprite’s width, height, and rom_addr 

(also discussed later) gets latched into a register. Those three pieces of information of 

each sprite is stored into registers to hold and remember the values later on. All this is 

done during the horizontal blanking intervals. When it comes time to display on to the 

screen (at h_reset), the x_hit signal then checks which of the stored sprite’s pixels on that 

line get displayed on the screen. This is done by checking if the current x_coor of the 

pixel at display is greater or equal to the x_coor of the sprite (given by the game 

controller) with larger precedence and less than the x_coor plus width of that sprite. If it 

is, x_hit is one, otherwise x_hit is zero. The overview module then proceeds to display 

that most precedence sprite’s pixels onto the screen on the particular line. Whenever reset 

is high (which is when srt_sprite is high, see the instantiation in overview) or frame_done 

is high, the video controller makes sure to clear all the previous line’s information from 

the registers so that it can use those registers to store information for the next line of 

pixels. In addition, the video controller sets the x_coor register to a large value, so that it 

won’t accidentally get an x_hit.  
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4.6 Overview Module 

           The overview component is the module that puts all the other modules together, 

and directly interfaces with the game controller’s top module. Whenever the game 

controller’s ready_sprite signal is high (this means when game controller tells me the 

sprites that are in the current frame), the video controller checks whether yt (where the 

current y_coor of the pixel at display is on screen) is greater than or equal to the y_coor 

of the sprite or less than/equal to the y_coor plus height of the sprite. It also checks to see 

if the sprite_no is not zero. If these conditions are true, y_hit is high which means the 

sprite is on the next line, and will get stored into the registers in the line_reg module. 

Otherwise, y_hit is low and nothing happens. The video controller also keeps a counter in 

this module. Initially, when srt_sprite is high, its counter is set to zero. Whenever 

ready_sprite and y_hit are asserted high, it increments the counter. The video controller 

then enables the load signal (which would load the sprite information into a register as 

described in the line_reg module) at each count and when y_hit is high. Because it is not 

expected for there to be more than 10 sprites displayed onto a single line in the screen, 

there are only 10 load enable signals and, therefore, 10 instantiations of the line_reg 

module in the overview module. As mentioned before, the registers in the line_reg 

module latch in 3 different values, one which is the rom_addr. The rom_addr is not 

merely the same as the mem_addr, which is the address of one of the 3 ROMs where the 

1st pixel of a particular sprite is at. Rather, the rom_addr is the address in the ROM whose 

data (pixel) contents are fetched, and whose address changes depending on where in the 

screen the current pixel is being displayed. Besides knowing the mem_addr to calculate 
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the rom_addr, the y_coor, x_coor, width of the sprite, and yt are used to calculate the 

rom_addr. Although yt is 10 bits, the least significant bit is taken out because each line 

needs to be displayed twice on the screen to get the 640 by 480 frame. This is because all 

the sprites were drawn relative to a 320 by 240 frame. The calculation of rom_addr 

abnormally took a vast majority of the 83 nanoseconds of the clock, because of the 

somewhat complicated computation and huge propagation delays. This complicated 

things because the video controller had to store all the sprite information in one clock 

cycle, since the game controller “spitted” out each sprite in one clock cycle. Therefore, 

all inputs to the rom_addr made as registers and, in consequence, delayed by one clock 

cycle. This meant that though the game controller gave the sprite number and its 

corresponding x_coor and y_coor at a particular cycle, the information and calculations 

wouldn’t be latched in until the following clock cycle. This gave ample time for the 

rom_addr calculation as well as other things to be done in one clock cycle. The addition 

of xt was not added into the rom_addr until much later when actually displaying on the 

screen to further alleviate the situation of having a potential problem due to “heavy” 

computation. If there were no x-hits, then the background pixels would show up by 

default.  

4.7 Debugging and Testing 

            During the course of the final project, my video controller went through many 

design stages. The biggest one turned out to be one week before it was due. In my 

previous design, I used many external chips, including two SRAMs used for memory. 

Two video memory chips were used because so that I could interleave the two memories 

together such that one would be read from at the same time the other would be written to. 
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I also would have used a number of tri-state buffers and a 8-bit register for my DAC. 

Though I did a lot of extensive simulations on my modules pertaining to that previous 

design, it was unfortunate that I only realized the futility of my design this late into the 

process when I was about to wire it and assign pins. In total, I had to use approximately 

70 pins, while the FPGA only had 50+ pins. This did not include the additional 10 pins 

that the game controller needed since we would be using the same FPGA. Although it 

was still somewhat feasible to decrease the number of pins using various methods, 

including faking more pins by time multiplexing several signals onto one set of pins, I 

would have needed to run at a higher clock frequency in order to get the same amount of 

information as the non-multiplexed scheme out of the chip within a given time interval. 

This meant running I would have had to run at a 25mhz pixel clock, which was not 

guaranteed to work on the FPGA kits. In order to be within the allotted set of pins, I still 

would have had to reduce approximately 15 pins, and though this was plausible 

theoretically (I won’t go into detail) it was both not guaranteed to work and even more 

timing issues would be involved. I also decided to do away with my original design 

because the amount of wiring would have been enormous. Although I was extremely 

hesistant to implement the new design back then, in the end, it turned out to be a success. 

Though there was still a lot of wiring, it was much less than what it could have been. The 

number of FPGA pins that I used were also within the scope of what the FPGA could 

provide.  

   One of the biggest issues I had when debugging my overall module was the 

amount of propagation delay I had because of somewhat “heavy” computation which 

used depended on a lot of inputs. I couldn’t afford this since I had to do everything in one 
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clock cycle, since there was only a limited amount of time the hblanking could provide. 

This led me to delay all the inputs by one clock cycle which was good, since I would be 

using up only an extra clock cycle as mentioned previously. Another issue I had was the 

number of if and else if statements I had in my code, with more than half of those 

statements in the sprite table module. One improvement I made to my code was the use 

of case statements. The optimization of my code in the sprite table module managed to 

decrease the computation and propagation delays by nearly 30ns, which was a lot 

considering each clock cycle was 83ns. Another problem I had was that I didn’t clear my 

registers in the line_reg after each line drawn on the screen. This presented problems 

since there would be times when I was not supposed to have an x-hit, but had one 

anyway. 

5 Conclusion 

Design which facilitated easy interfacing between three separate components was 

the lesson to be learnt from this experience. The design process itself consumed a large 

part of our project time. It was particularly challenging to work out the timing between 

the three separate components, especially since the Video Controller needed to output to 

the screen continuously. We learnt how to bypass such timing constraints with clever 

design techniques, which allow the processing time of the Game Controller to occur 

during the blanking of the vertical signal from the Video Controller. We also learnt about 

designing modules while taking into consideration the total size of the FPGA and EAB’s. 

At the very beginning, each of us was busy designing his/her own module that we 

completely overlooked the size and pin limitations of the FPGA. 
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The progress of the project should have been planning more carefully, allocating 

more time towards implementation and interfacing, since we learnt that interfacing 

consumes a very large amount of time. In fact, we couldn’t manage to fit the Resizer 

Module onto one FPGA, and in the end we did not have time to interface with the 

Resizer. Yet, the project, although challenging, was a greatly informative experience, and 

although our results did not match our original expectations, we were quite satisfied with 

the progress we made. 
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6 Appendix: Verilog Code 
 
6.1 Game Controller Unit 
 
6.1a Controller 
module controller(user_in, clk, xcoor, ycoor, size, sprite_no, le_size, frame_done, ready_sprite, start_sprite, 
reset_apply, 
 data_out, data_in, process_done, wr, reset_done, interrupt_valid, enable, instruction); 
input [4:0] user_in; 
input clk, frame_done, start_sprite; 
output [7:0] data_out, data_in; 
output [19:0] instruction; 
output[8:0] xcoor; 
output [7:0] ycoor; 
output [2:0] size, enable; 
output [4:0] sprite_no; 
output wr; 
output le_size, process_done, reset_apply, ready_sprite, reset_done, interrupt_valid; 
wire  stop, wr, busy,  temp_reg3, temp_reg4, reset_done, reset_apply, interrupt_valid; 
wire [2:0] pcsel, size_dat; 
wire [1:0] stack_sel; 
wire [2:0] enable; 
wire [6:0] reg_no; 
wire [8:0] branch, call, pc; 
wire [7:0] data_in, data_out; 
wire [19:0] instruction; 
 
insrom myrom(pc, instruction); 
decoder insdecoder(clk, user_in, instruction, pcsel, stack_sel, enable, data_out, data_in, le_size, size, 
stop,branch,  
 call, reg_no, wr, temp_reg3, temp_reg4, frame_done, reset_apply, reset_done, reset_reg, 
interrupt_valid); 
 
pc mypc(clk, reset_apply, pcsel,call, branch,frame_done, enable, pc, stack_sel, stop, reset_done, tos, nos); 
  
reg_file regfile(clk, reset_apply, start_sprite, frame_done, wr, data_in, data_out, 
 reg_no, sprite_no, xcoor, ycoor,  ready_sprite, stop, wr_sprite, wr_xcoor, wr_ycoor, reset_done, 
process_done, interrupt_valid); 
 
 
endmodule 
 
6.1b Decoder 
module decoder(clk, user_in, instruction, pcsel, stack_sel, enable, data_out, data_in, le_size, size_dat, 
stop,branch,  
 call, reg_no, wr, temp_reg3, temp_reg4, frame_done, apply_reset, reset_done, reset_reg, 
interrupt_valid); 
input clk, frame_done, reset_done, interrupt_valid; 
input [4:0] user_in; 
input[19:0] instruction; 
input [7:0] data_out; 
output [2:0] enable;  
output stack_sel, le_size, stop, wr, temp_reg3, temp_reg4, apply_reset, reset_reg;  
output [7:0] data_in; 
output [2:0] size_dat, pcsel; 
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output [8:0] branch, call; 
output [6:0] reg_no; 
 
reg [2:0] enable; 
reg stack_sel, size_en, sizen, le_size, stop, reset, wr, intreg1, intreg2, intreg3, intreg4, apply_reset, 
reset_reg; 
reg temp_reg3, temp_reg4; 
reg [7:0] data_in, temp_reg1, temp_reg2; 
reg [2:0] size_dat, pcsel;  
reg [3:0] state; 
reg [8:0] branch, call; 
reg [6:0] reg_no; 
reg [4:0] user_in_old, control; 
 
parameter op_assign=0; 
parameter op_addc = 1; 
parameter op_branchcond = 2; 
parameter op_compeq =3; 
parameter op_beq  = 4; 
parameter op_call = 5; 
parameter op_return = 6; 
parameter op_stop = 7; 
parameter op_size = 8;  
parameter op_compeqc = 9; 
parameter op_comple = 10; 
parameter op_complec = 11; 
parameter op_and = 12; 
parameter op_or = 13; 
parameter op_eqin = 14; 
parameter op_bne = 15; 
 
 
parameter state_write = 0; 
parameter state_op = 1; 
parameter state_process = 2; 
parameter state_read1 = 3; 
parameter state_read2= 4; 
parameter state_incpc = 5; 
parameter state_idle = 6; 
parameter state_reset = 7; 
parameter state_interrupt = 8; 
 
 
 
 always @ (posedge clk) 
  begin 
   //Synchronizer for the inputs 
   user_in_old <= user_in; 
   control <= user_in_old; 
   reset <= control[0]; 
   sizen <= size_en; 
   le_size <= sizen; 
 
   wr <=0; 
   branch <= instruction[8:0]; 
   call <= instruction [8:0]; 
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   stop <= 0; 
   size_en <= 0; 
   stack_sel <=0; 
   apply_reset<=0; 
   enable <=0; 
   reset_reg <= reset? 1: reset_reg; 
        
   if(reset_reg ) 
    begin 
     pcsel <=4; 
     enable <= 0; 
     stack_sel <= 0; 
     stop<= 0; 
     wr<=0; 
     reset_reg <=0; 
     apply_reset <=1; 
     state <= state_reset; 
    end 
    else if((control [4:1] !=0) && interrupt_valid) 
     begin 
      call<= 461; 
      pcsel <= 2; 
      enable <= 7; 
      stack_sel <=0; 
      state <= state_interrupt; 
     end 
   else case(state) 
   state_reset: 
    begin 
     if(reset_done) 
      begin 
      state<= state_op; 
     reset_reg <=0; 
     data_in <=0; 
     apply_reset <=0; 
      end 
    end  
   state_interrupt: 
    begin 
    enable <=0; 
    pcsel<=4; 
    state<= state_incpc; 
    end 
   state_write:  
     begin 
      wr<= 1; 
      state <= state_incpc; 
      pcsel <=0; 
     end 
    state_incpc: 
     begin 
      if(stop) 
       begin 
        pcsel <=4; 
        state <= state_idle; 
       end 
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     else 
      begin 
      pcsel<= 4; 
      state <= state_op; 
      end 
     end 
    state_idle: 
     begin 
      if(frame_done)  
        begin 
        state<= state_op; 
        pcsel <= 4; 
       end 
 
     end     
    state_process: 
     begin 
      case(instruction[19:16]) 
       op_addc: 
        begin 
         data_in<= temp_reg1 + 
instruction[7:0]; 
         state<= state_write; 
        end 
       op_compeq: 
        begin 
         case (instruction[1:0]) 
          0: intreg1 <= 
(temp_reg1 == temp_reg2)? 1: 0; 
          1: intreg2 <= 
(temp_reg1 == temp_reg2)? 1: 0; 
          2: intreg3 <= 
(temp_reg1 == temp_reg2)? 1: 0; 
          3: intreg4 <= 
(temp_reg1 == temp_reg2)? 1: 0; 
         endcase 
         state<= state_incpc; 
         pcsel <= 0; 
        end 
       op_comple: 
        begin 
         case (instruction[1:0]) 
          0: intreg1 <= 
(temp_reg1 <= temp_reg2)? 1: 0; 
          1: intreg2 <= 
(temp_reg1 <= temp_reg2)? 1: 0; 
          2: intreg3 <= 
(temp_reg1 <= temp_reg2)? 1: 0; 
          3: intreg4 <= 
(temp_reg1 <= temp_reg2)? 1: 0; 
         endcase 
         state<= state_incpc; 
         pcsel <= 0; 
        end 
       op_complec: 
        begin 
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         case (instruction[1:0]) 
          0: intreg1 <= 
(temp_reg1 <= instruction[8:2])? 1: 0; 
          1: intreg2 <= 
(temp_reg1 <= instruction[8:2])? 1: 0; 
          2: intreg3 <= 
(temp_reg1 <= instruction [8:2])? 1: 0; 
          3: intreg4 <= 
(temp_reg1 <= instruction[8:2])? 1: 0; 
         endcase 
         state<= state_incpc; 
         pcsel <= 0; 
        end 
       op_compeqc: 
        begin 
         case (instruction[1:0]) 
          0: intreg1 <= 
(temp_reg1 == instruction[8:2])? 1: 0; 
          1: intreg2 <= 
(temp_reg1 == instruction[8:2])? 1: 0; 
          2: intreg3 <= 
(temp_reg1 == instruction [8:2])? 1: 0; 
          3: intreg4 <= 
(temp_reg1 == instruction[8:2])? 1: 0; 
         endcase 
         state<= state_incpc; 
         pcsel <= 0; 
        end 
       default: begin 
         state <= state_incpc; 
         pcsel <=0; 
        end 
      endcase 
     end 
    state_read1: 
     begin 
      temp_reg2 <= data_out; 
      reg_no <= instruction [15:9]; 
      state <= state_read2; 
     end 
    state_read2: 
     begin 
      temp_reg1 <= data_out; 
      state <= state_process; 
     end 
 
    state_op: 
     case(instruction[19:16]) 
     op_assign:  
      begin 
       reg_no <= instruction [15:9]; 
       data_in <= instruction [7:0]; 
       enable <=0; 
       state<= state_write; 
      end 
     op_addc: 
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      begin 
       reg_no <= instruction [15:9]; 
       enable <=0; 
       state<= state_read1; 
      end 
     op_branchcond: 
      begin 
       if(instruction[15:11] == control) 
        pcsel <= 1; 
       else 
        begin 
         pcsel <=0; 
          
        end 
        enable <= 0; 
        state <= state_incpc; 
      end 
     op_compeq: 
      begin  
       reg_no <= instruction[8:2]; 
       state<= state_read1; 
       enable <= 0; 
      end 
     op_beq: 
      begin 
       case(instruction[15:14]) 
        0: pcsel <= intreg1? 0:1; 
        1: pcsel <= intreg2? 0:1; 
        2: pcsel <= intreg3? 0:1; 
        3: pcsel <= intreg4? 0:1; 
       endcase 
       enable <= 0;  
       state <= state_incpc; 
    
      end 
     op_bne: 
     begin 
       case(instruction[15:14]) 
        0: pcsel <= intreg1? 1:0; 
        1: pcsel <= intreg2? 1:0; 
        2: pcsel <= intreg3? 1:0; 
        3: pcsel <= intreg4? 1:0; 
       endcase 
       enable <= 0;  
       state <= state_incpc; 
    
      end 
 
     op_call: 
      begin 
       pcsel <= 2; 
       enable <= 3; 
       stack_sel <= 0; 
       state <= state_incpc; 
 
      end 
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     op_return: 
      begin 
       pcsel <=3; 
       stack_sel <= 1; 
       enable <= 1; 
       state <= state_incpc; 
      end 
     op_stop: 
      begin 
       stop <= 1; 
       enable<= 0; 
       pcsel <= 0; 
       state <= state_incpc; 
      end 
     op_size: 
      begin 
       size_dat<= instruction [2:0]; 
       size_en <= 1; 
       pcsel <= 0; 
       enable <= 0; 
       state <= state_incpc; 
      end 
     op_comple: 
      begin 
       reg_no <= instruction[8:2]; 
       state<= state_read1; 
       enable <= 0; 
      end 
     op_compeqc: 
      begin 
       reg_no <= instruction[15:9]; 
       state<= state_read2; 
       enable <= 0; 
       //pcsel <= 4; 
      end 
     op_complec: 
      begin 
       reg_no <= instruction[15:9]; 
       state<= state_read2; 
       enable <= 0; 
      end 
     op_and: 
      begin 
       case(instruction [11:10]) 
        0: intreg1 <= (temp_reg3 && 
temp_reg4)? 1:0; 
        1: intreg2 <= (temp_reg3 && 
temp_reg4)? 1:0; 
        2: intreg3 <= (temp_reg3 && 
temp_reg4)? 1:0; 
        3: intreg4 <= (temp_reg3 && 
temp_reg4)? 1:0; 
       endcase 
       enable <=0; 
       pcsel <=0; 
       state <= state_incpc; 
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      end 
     op_or: 
      begin 
       case(instruction [11:10]) 
        0: intreg1 <= (temp_reg3 || 
temp_reg4)? 1:0; 
        1: intreg2 <= (temp_reg3 || 
temp_reg4)? 1:0; 
        2: intreg3 <= (temp_reg3 || 
temp_reg4)? 1:0; 
        3: intreg4 <= (temp_reg3 || 
temp_reg4)? 1:0; 
       endcase 
       enable <=0; 
       pcsel <=0; 
       state <= state_incpc; 
      end 
     op_eqin: 
      begin 
       case(instruction [12:11]) 
        0: intreg1 <= (temp_reg3 == 
instruction[10]); 
        1: intreg2 <=(temp_reg3 == 
instruction[10]); 
        2: intreg3 <= (temp_reg3 == 
instruction[10]); 
        3: intreg4 <=(temp_reg3 == 
instruction[10]); 
       endcase 
       pcsel <= 0; 
       enable <=0; 
       state <= state_incpc;   
     
      end 
   
    endcase 
     
 
   endcase 
 
  
    
   
  end 
  
 always @(state) 
  begin 
   if(state == state_op) 
    begin 
     case(instruction[19:16]) 
      op_and: 
       begin 
       case(instruction [15:14]) 
        0: temp_reg3 <= intreg1; 
        1: temp_reg3 <= intreg2; 
        2: temp_reg3 <= intreg3; 
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        3: temp_reg3 <= intreg4; 
       endcase 
       case(instruction [13:12]) 
        0: temp_reg4 <= intreg1; 
        1: temp_reg4 <= intreg2; 
        2: temp_reg4 <= intreg3; 
        3: temp_reg4 <= intreg4; 
       endcase 
      end 
     op_or: 
      begin 
       case(instruction [15:14]) 
        0: temp_reg3 <= intreg1; 
        1: temp_reg3 <= intreg2; 
        2: temp_reg3 <= intreg3; 
        3: temp_reg3 <= intreg4; 
       endcase 
       case(instruction [13:12]) 
        0: temp_reg4 <= intreg1; 
        1: temp_reg4 <= intreg2; 
        2: temp_reg4 <= intreg3; 
        3: temp_reg4 <= intreg4; 
       endcase 
      end 
     op_eqin: 
      begin 
       case(instruction[15:13]) 
         0: temp_reg3 <= 
control[0]; 
         1: temp_reg3 <= control 
[1]; 
         2: temp_reg3 <= control 
[2]; 
         3: temp_reg3 <= 
control[3]; 
         4: temp_reg3 <= control 
[4]; 
         default: temp_reg3 <=0; 
       endcase 
      end 
     default: 
      begin 
       temp_reg3<=0; 
       temp_reg4 <=0; 
      end 
 
    endcase 
   end 
   else begin temp_reg3 <=0; temp_reg4 <=0; end 
  end 
 
 
endmodule 
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6.1c PC 
module pc(clk, reset_apply, pcsel,call, branch,frame_done, enable, pc, stack_sel, stop, reset_done, tos, 
nos); 
 input clk, frame_done, stack_sel, stop, reset_apply, reset_done; 
 output[8:0] tos, nos; 
 input [2:0]  pcsel; 
 input [2:0] enable; 
 input [8:0] call, branch; 
 output[8:0] pc; 
 wire [8:0] new_pc, return; 
 reg [8:0] pc; 
 reg[8:0] tos, nos; 
 reg [1:0] state; 
  
 parameter state_idle = 0; 
 parameter state_busy = 1; 
 parameter state_reset = 3; 
  
 assign new_pc = reset_apply? 0 : pc +1; 
 assign return = tos; 
  
 always @(posedge clk) 
  begin 
   if(reset_apply) 
    begin 
     pc <= 0; 
     tos<=0; 
     nos<=0; 
     state<= state_reset;  
    end 
   else case(state) 
     state_idle:  
      begin 
       if(frame_done) 
        begin 
         state<= state_busy; 
        end 
      end 
     state_reset: 
      begin 
       if(reset_done) 
        begin 
         state <= state_busy; 
        end 
      end 
     state_busy: 
      begin 
       if(stop) 
        begin 
         state <= state_idle; 
          
        end    
    
       case(pcsel) 
        0: pc <= new_pc; 
        1: pc <= branch; 
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        2: pc <= call; 
        3: pc <= return; 
        4: pc <= pc; 
        default: pc <= 3'bxxx; 
       endcase 
        case(stack_sel) 
         0:  
          begin 
           if(enable 
== 7) tos <= pc; 
           
 else if (enable == 3) tos<= new_pc; 
          end  
         1: tos<= enable[0]? nos: 
tos; 
        endcase 
       nos<= enable[1]? tos: nos; 
      end 
    endcase 
  end 
  
endmodule 
 
6.1d Register File 
module reg_file(clk, reset_apply, start_sprite, frame_done, wr, data_in, data_out, 
 reg_no, sprite_no, xcoor, ycoor, ready_sprite, stop, wr_sprite, wr_xcoor, wr_ycoor,  
reset_done, process_done, interrupt_valid); 
input clk, start_sprite, frame_done, wr,  reset_apply, stop; 
input [7:0] data_in; 
input [6:0] reg_no; 
output ready_sprite, wr_xcoor, wr_ycoor, wr_sprite, reset_done, process_done, interrupt_valid; 
reg ready_sprite,wr_sprite, wr_xcoor, wr_ycoor, process_done, interrupt_valid; 
 
reg reset_done; //to indicate that blanking the regfile memory is done 
 
output [7:0] data_out; 
wire [7:0] sprite_ram_out, xcoor_ram_out, ycoor_ram_out; 
reg [7:0] data_out; 
 
reg [4:0] address; 
reg [1:0] state; 
reg [5:0] counter; 
 
output [4:0] sprite_no; 
output [8:0] xcoor; 
output [7:0] ycoor; 
 
regram1 sprite_ram(address, wr_sprite, data_in, sprite_ram_out); 
regram1 xcoor_ram(address, wr_xcoor, data_in, xcoor_ram_out); 
regram1 ycoor_ram(address, wr_ycoor, data_in, ycoor_ram_out); 
 
parameter state_process = 1; 
parameter state_waitforsprite = 0; 
parameter state_loop = 2; 
parameter state_reset = 3; 
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always @ (posedge clk) 
 begin 
  reset_done <=0; 
  interrupt_valid <=0; 
 
  if(reset_apply)  
   begin  
    counter <= 0;  
    state<= state_reset;   
 
    ready_sprite <= 0;  
    process_done <=0; 
    address <=0;  
   end  
  else case(state) 
   state_reset: 
    begin 
     address<=counter[4:0]; 
     counter<= counter+1; 
     if(counter == 32) 
      begin 
       reset_done<=1; 
       state <= state_process; 
       interrupt_valid <=1; 
       process_done<=0; 
       counter<=0; 
      end 
 
      
    end 
   state_process: 
    begin 
     address <= reg_no[6:2]; 
     if(stop) 
      begin 
       state <= state_waitforsprite; 
       process_done <=1; 
       counter <= 0; 
      end 
    end 
 
   state_waitforsprite:  
    begin 
     if(start_sprite) 
      begin 
       state<= state_loop; 
        
      end  
     else if(frame_done) 
      begin 
       state <= state_process; 
       interrupt_valid <=1; 
       process_done <=0; 
      end      
    end 
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   state_loop: 
    begin 
     address <=  counter[4:0] ; 
     ready_sprite <=1;  
     counter<= counter+1; 
     if(counter == 32) 
      begin 
       state <= state_waitforsprite; 
       ready_sprite <=0; 
       counter<=0; 
      end 
    end 
    
   endcase 
   
 end 
 
   assign sprite_no = sprite_ram_out [4:0]; 
  assign xcoor[8:1] = xcoor_ram_out; 
  assign xcoor[0] = 0; 
  assign ycoor = ycoor_ram_out[7:0]; 
 
 
always @(state) 
 begin 
   if (state == state_process) 
   begin 
    case(reg_no[1:0]) 
      0:  
       begin 
        wr_sprite <=wr; 
        data_out <= sprite_ram_out; 
       end 
      1: 
       begin 
        wr_xcoor <= wr; 
        data_out <= xcoor_ram_out; 
       end 
      2: 
       begin 
        wr_ycoor <= wr; 
        data_out <= ycoor_ram_out; 
       end 
      default:; 
     endcase 
       
   end  
    else if (state== state_reset) 
     begin 
      wr_sprite <=1; 
      wr_xcoor <=1; 
      wr_ycoor <=1; 
     end 
    else  
     begin  
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      data_out <= 0; 
      wr_sprite <=0; 
      wr_xcoor <=0; 
      wr_ycoor <=0; 
     end 
 
  end 
endmodule 
 
6.2 The Resizer 
 
6.2a Major FSM 
module majorfsm(clock, reset, start_copy, start_int, start_dec1, start_dec2, busy_copy, busy_int, 
busy_dec1, busy_dec2, size, le_size, oe_driver); 
input clock, reset, busy_copy, busy_int, busy_dec1, busy_dec2, le_size; 
input [2:0] size; 
output start_copy, start_int, start_dec1, start_dec2, oe_driver; 
 
reg start_copy, start_int, start_dec1, start_dec2, oe_driver; 
reg [2:0] state, M; 
reg [1:0] L; 
 
parameter idle = 0; 
parameter copy = 1; 
parameter wait1 = 2; 
parameter int = 3; 
parameter wait2 = 4; 
parameter dec1 = 5; 
parameter wait3 = 6; 
parameter dec2 = 7; 
 
always @ (state) 
begin 
case (state) 
 idle: begin start_copy = le_size; 
    start_int = 0; 
    start_dec1 = 0; 
    start_dec2 = 0;  
    oe_driver = start_copy || start_int || start_dec1 || start_dec2; end 
 copy: begin start_copy = 0; 
    start_int = 0; 
    start_dec1 = 0; 
    start_dec2 = 0; 
    oe_driver = 1; end 
 wait1: begin start_copy = 0; 
     start_int = 1; 
     start_dec1 = 0; 
     start_dec2 = 0; 
     oe_driver = 1; end 
 int: begin start_copy = 0; 
    start_int = 0; 
    start_dec1 = 0; 
    start_dec2 = 0; 
    oe_driver = 1; end 
 wait2: begin start_copy = 0; 
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     start_int = 0; 
     start_dec1 = 1; 
     start_dec2 = 0; 
     oe_driver = 1; end 
 dec1: begin start_copy = 0; 
    start_int = 0; 
    start_dec1 = 0; 
    start_dec2 = 0; 
    oe_driver = 1; end 
 wait3: begin start_copy = 0; 
     start_int = 0; 
     start_dec1 = 0; 
     start_dec2 = 1; 
     oe_driver = 1; end 
 dec2: begin start_copy = 0; 
    start_int = 0; 
    start_dec1 = 0; 
    start_dec2 = 0; 
    oe_driver = 1; end 
 default: begin start_copy = 1'hx; 
     start_int = 1'hx; 
     start_dec1 = 1'hx; 
     start_dec2 = 1'hx; 
     oe_driver = 1'hx; end 
endcase 
end 
 
always @ (posedge clock) 
begin 
        begin 
                case (size) 
                        3'b000: begin L <= 2'b01; 
                                        M <= 3'b001; end 
                        3'b001: begin L <= 2'b10; 
                                        M <= 3'b011; end 
                        3'b010: begin L <= 2'b01; 
                                        M <= 3'b010; end 
                        3'b011: begin L <= 2'b01; 
                                        M <= 3'b011; end 
                        3'b100: begin L <= 2'b01; 
                                        M <= 3'b100; end 
                        3'b101: begin L <= 2'b01; 
                                        M <= 3'b110; end 
                        default: begin L <= 2'bxx; 
                                            M <= 3'bxxx; end 
                endcase 
        end         
         
        if (reset) state <= idle; 
        else case (state) 
                idle: begin 
                   if (le_size) state <= copy; 
                            else state <= state; 
                        end 
                copy: state <= busy_copy ? state : wait1; 
                wait1: state <= int; 
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                int: state <= busy_int ? state : wait2; 
                wait2: state <= dec1; 
                dec1: begin 
      if (busy_dec1) state <= state; 
      else 
       begin 
                                if ((M == 3'b100) || (M == 3'b110)) state <= wait3; 
                                else state <= idle; 
                            end 
       end 
                wait3: state <= dec2; 
                dec2: state <= busy_dec2 ? state : idle; 
        endcase 
end 
endmodule 
 
6.2b Minor FSM 
module minorfsm(clock, reset, start_copy, start_int, start_dec1, start_dec2, busy_copy, busy_int, 
busy_dec1, 
busy_dec2, addr_rom, addr_ram, size, cs_rom, oe_rom, we_rom, cs_ram, oe_ram, rw_ram, data_ram, 
oe_driver); 
input clock, reset, start_copy, start_int, start_dec1, start_dec2, oe_driver; 
input [2:0] size; 
output busy_copy, busy_int, busy_dec1, busy_dec2, cs_rom, oe_rom, we_rom, cs_ram, oe_ram, rw_ram; 
output [14:0] addr_rom, addr_ram; 
inout [7:0] data_ram; 
 
reg busy_copy, busy_int, busy_dec1, busy_dec2, cs_rom, oe_rom, we_rom, cs_ram, oe_ram, rw_ram; 
reg [14:0] addr_rom, addr_ram; 
reg [1:0] L; 
reg [2:0] M; 
reg [3:0] state; 
reg [1:0] count0; //Used to tell what mode the minorfsm is in, 1 for int, 2 for dec1, 3 for dec2 
reg [5:0] count1; //Used to count the entries in each row 
reg [14:0] count2; //Generally used to tell what address ram should read from 
reg [14:0] count3; //Generally used to tell what address ram should write to 
reg [3:0] count4; //Used to tell when all accumulations are done/which coeff. to use 
reg [5:0] count5; //Used to see whether a number is divisible by 22 or not 
reg [5:0] addr_rom_coeff; 
reg [19:0] accumr, accumg, accumb; 
 
wire [7:0] data_rom_coeff, data_ramr, data_ramg, data_ramb; 
wire [15:0] multr_result, multg_result, multb_result; 
wire [19:0] sxt_multr, sxt_multg, sxt_multb; 
 
parameter idle = 0; 
parameter read_rom = 1; 
parameter wait1 = 2; 
parameter write_ram1 = 3; 
parameter wait2 = 4; 
parameter read_ram = 5; 
parameter wait3 = 6; 
parameter write_ram2 = 7; 
parameter wait4 = 8; 
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rom_coeff rom_coeff1(addr_rom_coeff, data_rom_coeff); 
mult multr(data_ramr, data_rom_coeff, multr_result); 
mult multg(data_ramg, data_rom_coeff, multg_result); 
mult multb(data_ramb, data_rom_coeff, multb_result); 
 
assign data_ram = (state == write_ram2) ? ( (count0==1) ? ((L==2'b01) ? {accumr[13:12], accumg[13:12], 
accumb[13:12], 2'b00} : 
    {accumr[14:13], accumg[13:12], accumb[13:12], 2'b00}) : ( (count0==2) ? ((M==3'b001) ? 
{accumr[13:12], accumg[13:12], 
 accumb[13:12], 2'b00} : ( ((M==3'b010)||(M==3'b100)) ? {accumr[11:10], accumg[10:9], 
accumb[10:9], 2'b00} : 
 {accumr[13:12], accumg[12:11], accumb[12:11], 2'b00} )) : ((M==3'b100) ? {accumr[11:10], 
accumg[10:9], accumb[10:9], 2'b00} : 
 {accumr[11:10], accumg[10:9], accumb[10:9], 2'b00}))) : 8'bz; 
 
assign data_ramr = {data_ram[7:6], 6'b000000}; 
assign data_ramg = {data_ram[5:4], 6'b000000}; 
assign data_ramb = {data_ram[3:2], 6'b000000}; 
assign sxt_multr = multr_result[15] ? {4'b1111, multr_result} : {4'b0000, multr_result}; 
assign sxt_multg = multg_result[15] ? {4'b1111, multg_result} : {4'b0000, multg_result}; 
assign sxt_multb = multb_result[15] ? {4'b1111, multb_result} : {4'b0000, multb_result}; 
 
always @ (posedge clock) 
begin 
        begin 
                case (size) 
                        3'b000: begin L <= 2'b01; 
                                        M <= 3'b001; end 
                        3'b001: begin L <= 2'b10; 
                                        M <= 3'b011; end 
                        3'b010: begin L <= 2'b01; 
                                        M <= 3'b010; end 
                        3'b011: begin L <= 2'b01; 
                                        M <= 3'b011; end 
                        3'b100: begin L <= 2'b01; 
                                        M <= 3'b100; end 
                        3'b101: begin L <= 2'b01; 
                                        M <= 3'b110; end 
                        default: begin L <= 2'bxx; 
                                            M <= 3'bxxx; end 
                endcase 
        end 
  
 if (reset) state <= idle; 
 else case (state) 
  idle: begin 
     cs_rom <= 1; 
     oe_rom <= 1; 
     we_rom <= 1; 
     cs_ram <= oe_driver; 
     oe_ram <= oe_driver; 
     rw_ram <= 1; 
     count0 <= 0; 
     count1 <= 0; 
     count2 <= 0; 
     count3 <= 0; 
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     count4 <= 1; 
     count5 <= 0; 
     busy_copy <= 0; 
     busy_int <= 0; 
     busy_dec1 <= 0; 
     busy_dec2 <= 0; 
     addr_rom <= 0; 
     addr_ram <= 0; 
     addr_rom_coeff <= 45; 
     accumr <= 0; 
     accumg <= 0; 
     accumb <= 0; 
     if (start_copy) 
                     begin 
                        state <= read_rom; 
            busy_copy <= start_copy; 
            addr_ram <= 0; 
                           cs_rom <= 0; 
                           oe_rom <= 0; 
         cs_ram <= 1; 
         oe_ram <= 1; 
                           if (L==2'b10) 
                               begin addr_rom <= 4096; 
                                        addr_ram <= 1; 
                               end 
                       end 
     else if (start_int) 
      begin 
       count0 <= 1; 
       count3 <= 16384; 
       state <= read_ram; 
       busy_int <= start_int; 
       addr_ram <= 0; 
       cs_ram <= 0; 
       oe_ram <= 0; 
      end 
     else if (start_dec1) 
      begin 
       count0 <= 2; 
       count2 <= 16384; 
       state <= read_ram; 
       busy_dec1 <= start_dec1; 
       addr_ram <= 0; 
       cs_ram <= 0; 
       oe_ram <= 0; 
      end 
     else if (start_dec2) 
      begin 
       count0 <= 3; 
       count3 <= 16384; 
       state <= read_ram; 
       busy_dec2 <= start_dec2; 
       addr_ram <= 0; 
       cs_ram <= 0; 
       oe_ram <= 0; 
      end 
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     else state <= state; 
    end 
                read_rom:        begin          busy_copy <= 1; 
                                                state <= wait1; 
                                                cs_rom <= 1; 
                                                oe_rom <= 1; 
                                        end 
                wait1:        begin  busy_copy <= 1; 
                                        cs_ram <= 0; 
                                        rw_ram <= 0; 
                                        state <= write_ram1; 
                                end                                 
                write_ram1:        begin  busy_copy <= 1; 
                                                state <= wait2; 
                                                cs_ram <= 1; 
                                                rw_ram <= 1; 
                                        end 
                wait2: begin   if (L==2'b01) 
                                                begin 
                                                        if (addr_ram == 4095) 
                                                         begin state <= idle; 
                                                           busy_copy <= 0; 
                                                           count2 <= 0; 
                                                           count3 <= 0; end 
                                                        else 
                                                                begin busy_copy <= 1; 
                                                                        state <= read_rom; 
                                                                        cs_rom <= 0; 
                                                                        oe_rom <= 0; 
            
      addr_rom <= addr_rom + 1; 
            
      addr_ram <= addr_ram + 1; 
                                                                end 
                                                end 
                                        if (L==2'b10) 
                                                begin 
                                                        if (count2 == 16383) 
                                                         begin state <= idle; 
                                                           busy_copy <= 0; 
                                                           count2 <= 0; 
                                                           count3 <= 0; end 
                                                        else 
                                                                begin busy_copy <= 1; 
                                                                        state <= read_rom; 
                                                                        cs_rom <= 0; 
                                                                        oe_rom <= 0; 
                                                                        count2 <= count2 + 1; 
                                                                        if (count2 < 12287) 
                                                                                begin 
                                                                                        addr_rom <= 4096; 
                                                                                        if (count3 < 63) 
                                                                                                begin 
                                                                                                        addr_ram <= addr_ram + 2; 
                                                                                                        count3 <= count3 + 1; 
                                                                                                end 
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                                                                                        else if ((count3 >= 63) && (count3 < 191)) 
                                                                                                begin 
                                                                                                        addr_ram <= addr_ram + 1; 
                                                                                                        count3 <= count3 + 1; 
                                                                                                end 
                                                                                        else if (count3 == 191) 
                                                                                                begin 
                                                                                                        addr_ram <= addr_ram + 2; 
                                                                                                        count3 <= 0; 
                                                                                                end 
                                                                                end 
                                                                else if (count2 == 12287) 
                                                                        begin 
                                                                                addr_rom <= 0; 
                                                                                addr_ram <= 0; 
            
        count3 <= 0; 
                                                                        end 
                                                                else if ((count2 > 12287) && (count2 < 16383)) 
                                                                        begin 
                                                                                addr_rom <= addr_rom + 1; 
                                                                                if (count3 < 63) 
                                                                                        begin 
                                                                                                addr_ram <= addr_ram + 2; 
                                                                                                count3 <= count3 + 1; 
                                                                                        end 
                                                                                else if (count3 == 63) 
                                                                                        begin 
                                                                                                addr_ram <= addr_ram + 130; 
                                                                                                count3 <= 0; 
                                                                                        end 
                                                                        end 
                                                                end 
                                                end 
                                end  
  read_ram: begin 
      accumr <= accumr + sxt_multr; 
      accumg <= accumg + sxt_multg; 
      accumb <= accumb + sxt_multb; 
      cs_ram <= 1; 
      oe_ram <= 1; 
      state <= wait3; 
      busy_int <= (count0 == 1) ? 1 : 0; 
      busy_dec1 <= (count0 == 2) ? 1 : 0; 
      busy_dec2 <= (count0 == 3) ? 1 : 0; 
     end 
  wait3: begin 
     cs_ram <= 0; 
     oe_ram <= 0; 
     count4 <= count4 + 1; 
     if (count4 == 9) 
      begin state <= write_ram2; 
        rw_ram <= 0; 
        addr_ram <= count3; 
        count4 <= 0; end 
     else begin state <= read_ram; 
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      if (count0 == 1) 
       begin 
        busy_int <= 1; 
        if (L == 2'b01) 
         begin 
          case (count4) 
           0:
 begin  addr_ram <= (count2 < 65) ? 0 : count2 - 65; 
            
  addr_rom_coeff <= ( (count2 < 64) || (count2[5:0] == 6'b000000) ) ? 45: 0; end 
           1: 
 begin addr_ram <= (count2 < 64) ? 0 : count2 - 64; 
            
  addr_rom_coeff <= (count2 < 64) ? 45 : 1; end 
           2:
 begin addr_ram <= (count2 < 63) ? 0 : count2 - 63; 
            
  addr_rom_coeff <= ( (count2 < 64) || (count2[5:0] == 6'b111111) ) ? 45 : 2; end 
           3:
 begin addr_ram <= (count2 < 1) ? 0 : count2 - 1; 
            
  addr_rom_coeff <= (count2[5:0] == 6'b000000) ? 45 : 3; end 
           4:
 begin addr_ram <= count2; 
            
  addr_rom_coeff <= 4; end 
           5:
 begin addr_ram <= count2 + 1; 
            
  addr_rom_coeff <= (count2[5:0] == 6'b111111) ? 45 : 5; end 
           6:
 begin addr_ram <= count2 + 63; 
            
  addr_rom_coeff <= ( (count2[5:0] == 6'b000000) || 
            
   ((count2 >= 4032) && (count2 < 4096)) ) ? 45 : 6; end 
           7:
 begin addr_ram <= count2 + 64; 
            
  addr_rom_coeff <= ((count2 >= 4032) && (count2 < 4096)) ? 45 : 7; end 
           8:
 begin addr_ram <= count2 + 65; 
            
  addr_rom_coeff <= ( ((count2 >= 4032) && (count2 < 4096)) || 
            
   (count2[5:0] == 6'b111111) ) ? 45 : 8; end 
           default:
 begin addr_ram <= 14'hxxxx; 
            
    addr_rom_coeff <= 6'hxx; end 
          endcase 
         end 
        else if (L == 2'b10) 
         begin 
          case (count4) 
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           0:
 begin addr_ram <= (count2 < 129) ? 0 : count2 - 129; 
            
  addr_rom_coeff <= ( (count2 < 128) || (count2[6:0] == 7'b0000000) ) ? 45 : 9; end 
           1:
 begin addr_ram <= (count2 < 128) ? 0 : count2 - 128; 
            
  addr_rom_coeff <= (count2 < 128) ? 45 : 10;  end 
           2:
 begin addr_ram <= (count2 < 127) ? 0 : count2 - 127; 
            
  addr_rom_coeff <= ( (count2 < 128) || (count2[6:0] == 7'b1111111) ) ? 45 : 11; end 
           3:
 begin addr_ram <= (count2 < 1) ? 0 : count2 - 1; 
            
  addr_rom_coeff <= (count2[6:0] == 7'b0000000) ? 45 : 12; end 
           4:
 begin addr_ram <= count2; 
            
  addr_rom_coeff <= 13; end 
           5:
 begin addr_ram <= count2 + 1; 
            
  addr_rom_coeff <= (count2[6:0] == 7'b1111111) ? 45 : 14; end 
           6:
 begin addr_ram <= count2 + 127; 
            
  addr_rom_coeff <= ( (count2[6:0] == 7'b0000000) || 
            
   ((count2 >= 16256) && (count2 < 16384)) ) ? 45 : 15; end 
           7:
 begin addr_ram <= count2 + 128; 
            
  addr_rom_coeff <= ((count2 >= 16256) && (count2 < 16384)) ? 45 : 16; end 
           8:
 begin addr_ram <= count2 + 129; 
            
  addr_rom_coeff <= ( ((count2 >= 16256) && (count2 < 16384)) || 
            
   (count2[6:0] == 7'b1111111) ) ? 45 : 17; end 
           default:
 begin addr_ram <= 14'hxxxx; 
            
    addr_rom_coeff <= 6'hxx; end 
 
          endcase  
        
         end 
       end 
     else if (count0 == 2) 
       begin 
        busy_dec1 <= 1; 
        if (M == 1) 
         begin 
          case (count4) 
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           0:
 begin  addr_ram <= count2 - 65; 
            
  addr_rom_coeff <= ( (count2 < 16448) || (count2[5:0] == 6'b000000) ) ? 45 : 18; end 
           1: 
 begin addr_ram <= count2 - 64; 
            
  addr_rom_coeff <= (count2 < 16448) ? 45 : 19; end 
           2:
 begin addr_ram <= count2 - 63; 
            
  addr_rom_coeff <= ( (count2 < 16448) || (count2[5:0] == 6'b111111) ) ? 45 : 20; end 
           3:
 begin addr_ram <= count2 - 1; 
            
  addr_rom_coeff <= (count2[5:0] == 6'b000000) ? 45 : 21; end 
           4:
 begin addr_ram <= count2; 
            
  addr_rom_coeff <= 22; end 
           5:
 begin addr_ram <= count2 + 1; 
            
  addr_rom_coeff <= (count2[5:0] == 6'b111111) ? 45 : 23; end 
           6:
 begin addr_ram <= count2 + 63; 
            
  addr_rom_coeff <= ( (count2[5:0] == 6'b000000) || 
            
   ((count2 >= 20416) && (count2 < 20480)) )? 45 : 24; end 
           7:
 begin addr_ram <= count2 + 64; 
            
  addr_rom_coeff <= ((count2 >= 20416) && (count2 < 20480)) ? 45 : 25; end 
           8:
 begin addr_ram <= count2 + 65; 
            
  addr_rom_coeff <= ( ((count2 >= 20416) && (count2 < 20480)) || 
            
   (count2[5:0] == 6'b111111) ) ? 45 : 26; end 
           default:
 begin addr_ram <= 14'hxxxx; 
            
  addr_rom_coeff <= 6'hxx; end 
          endcase 
         end 
        else if ((M == 2) || (M == 4)) 
         begin 
          case (count4) 
           0:
 begin  addr_ram <= count2 - 65; 
            
  addr_rom_coeff <= ( (count2 < 16448) || (count2[5:0] == 6'b000000) ) ? 45 : 27; end 
           1: 
 begin addr_ram <= count2 - 64; 

 66



            
  addr_rom_coeff <= (count2 < 16448) ? 45 : 28; end 
           2:
 begin addr_ram <= count2 - 63; 
            
  addr_rom_coeff <= ( (count2 < 16448) || (count2[5:0] == 6'b111111) ) ? 45 : 29; end 
           3:
 begin addr_ram <= count2 - 1; 
            
  addr_rom_coeff <= (count2[5:0] == 6'b000000) ? 45 : 30; end 
           4:
 begin addr_ram <= count2; 
            
  addr_rom_coeff <= 31; end 
           5:
 begin addr_ram <= count2 + 1; 
            
  addr_rom_coeff <= (count2[5:0] == 6'b111111) ? 45 : 32; end 
           6:
 begin addr_ram <= count2 + 63; 
            
  addr_rom_coeff <= ( (count2[5:0] == 6'b000000) || 
            
   ((count2 >= 20416) && (count2 < 20480)) )? 45 : 33; end 
           7:
 begin addr_ram <= count2 + 64; 
            
  addr_rom_coeff <= ((count2 >= 20416) && (count2 < 20480)) ? 45 : 34; end 
           8:
 begin addr_ram <= count2 + 65; 
            
  addr_rom_coeff <= ( ((count2 >= 20416) && (count2 < 20480)) || 
            
   (count2[5:0] == 6'b111111) ) ? 45 : 35; end 
           default:
 begin addr_ram <= 14'hxxxx; 
            
  addr_rom_coeff <= 6'hxx; end 
          endcase 
         end 
        else if ((M == 3) || (M == 6)) 
         begin if (L == 2'b01) 
          begin 
          case (count4) 
           0:
 begin  addr_ram <= count2 - 65; 
            
  addr_rom_coeff <= ( (count2 < 16448) || (count2[5:0] == 6'b000000) ) ? 45 : 36; end 
           1: 
 begin addr_ram <= count2 - 64; 
            
  addr_rom_coeff <= (count2 < 16448) ? 45 : 37; end 
           2:
 begin addr_ram <= count2 - 63; 
            
  addr_rom_coeff <= ( (count2 < 16448) || (count2[5:0] == 6'b111111) ) ? 45 : 38; end 
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           3:
 begin addr_ram <= count2 - 1; 
            
  addr_rom_coeff <= (count2[5:0] == 6'b000000) ? 45 : 39; end 
           4:
 begin addr_ram <= count2; 
            
  addr_rom_coeff <= 40; end 
           5:
 begin addr_ram <= count2 + 1; 
            
  addr_rom_coeff <= (count2[5:0] == 6'b111111) ? 45 : 41; end 
           6:
 begin addr_ram <= count2 + 63; 
            
  addr_rom_coeff <= ( (count2[5:0] == 6'b000000) || 
            
   ((count2 >= 20416) && (count2 < 20480)) ) ? 45 : 42; end 
           7:
 begin addr_ram <= count2 + 64; 
            
  addr_rom_coeff <= ((count2 >= 20416) && (count2 < 20480)) ? 45 : 43; end 
           8:
 begin addr_ram <= count2 + 65; 
            
  addr_rom_coeff <= ( ((count2 >= 20416) && (count2 < 20480)) || 
            
   (count2[5:0] == 6'b111111) ) ? 45 : 44; end 
           default:
 begin addr_ram <= 14'hxxxx; 
            
  addr_rom_coeff <= 6'hxx; end 
          endcase 
          end 
         else if (L == 2'b10) 
          begin 
          case (count4) 
           0:
 begin  addr_ram <= count2 - 129; 
            
  addr_rom_coeff <= ( (count2 < 16512) || (count2[6:0] == 7'b0000000) ) ? 45 : 36;
 end 
           1: 
 begin addr_ram <= count2 - 128; 
            
  addr_rom_coeff <= (count2 < 16512) ? 45 : 37; end 
           2:
 begin addr_ram <= count2 - 127; 
            
  addr_rom_coeff <= ( (count2 < 16512) || (count2[6:0] == 7'b1111111) ) ? 45 : 38;
 end 
           3:
 begin addr_ram <= count2 - 1; 
            
  addr_rom_coeff <= (count2[6:0] == 7'b0000000) ? 45 : 39; end 
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           4:
 begin addr_ram <= count2; 
            
  addr_rom_coeff <= 40; end 
 
           5:
 begin addr_ram <= (count2 == 32767) ? 0 : count2 + 1; 
            
  addr_rom_coeff <= (count2[6:0] == 7'b1111111) ? 45 : 41; end 
           6:
 begin addr_ram <= (count2 > 32640) ? 0 : count2 + 127; 
            
  addr_rom_coeff <= ( (count2[6:0] == 7'b0000000) || 
            
   ((count2 >= 32640) && (count2 < 32768)) ) ? 45 : 42; end 
           7:
 begin addr_ram <= (count2 > 32639) ? 0 : count2 + 128; 
            
  addr_rom_coeff <= ((count2 >= 32640) && (count2 < 32768)) ? 45 : 43; end 
 
           8:
 begin addr_ram <= (count2 > 32638) ? 0 : count2 + 129; 
            
  addr_rom_coeff <= ( ((count2 >= 32640) && (count2 < 32768)) || 
            
   (count2[6:0] == 7'b1111111) ) ? 45 : 44; end 
           default:
 begin addr_ram <= 14'hxxxx; 
            
  addr_rom_coeff <= 6'hxx; end 
          endcase 
          end 
         end 
        end 
        else if (count0 == 3) 
         begin busy_dec2 <= 1; 
          if (M == 4) 
          begin 
          case (count4) 
           0:
 begin  addr_ram <= (count2 < 33) ? 0 : count2 - 33; 
            
  addr_rom_coeff <= ( (count2 < 32) || (count2[4:0] == 5'b00000) ) ? 45 : 27; end 
           1: 
 begin addr_ram <= (count2 < 32) ? 0 : count2 - 32; 
            
  addr_rom_coeff <= (count2 < 32) ? 45 : 28; end 
           2:
 begin addr_ram <= (count2 < 31) ? 0 : count2 - 31; 
            
  addr_rom_coeff <= ( (count2 < 32) || (count2[4:0] == 5'b11111) ) ? 45 : 29; end 
           3:
 begin addr_ram <= (count2 < 1) ? 0 : count2 - 1; 
            
  addr_rom_coeff <= (count2[4:0] == 5'b00000) ? 45 : 30; end 
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           4:
 begin addr_ram <= count2; 
            
  addr_rom_coeff <= 31; end 
           5:
 begin addr_ram <= count2 + 1; 
            
  addr_rom_coeff <= (count2[4:0] == 5'b11111) ? 45 : 32; end 
           6:
 begin addr_ram <= count2 + 31; 
            
  addr_rom_coeff <= ( (count2[4:0] == 5'b00000) || 
            
   ((count2 >= 992) && (count2 < 1024)) ) ? 45 : 33; end 
           7:
 begin addr_ram <= count2 + 32; 
            
  addr_rom_coeff <= ((count2 >= 992) && (count2 < 1024)) ? 45 : 34; end 
           8:
 begin addr_ram <= count2 + 33; 
            
  addr_rom_coeff <= ( ((count2 >= 992) && (count2 < 1024)) || 
            
   (count2[4:0] == 5'b11111) ) ? 45 : 35; end 
           default:
 begin addr_ram <= 14'hxxxx; 
            
  addr_rom_coeff <= 6'hxx; end 
          endcase 
          end 
         else if (M == 6) 
          begin 
          case (count4) 
           0:
 begin  addr_ram <= (count2 < 23) ? 0 : count2 - 23; 
            
  addr_rom_coeff <= ( (count2 < 22) || (count5 == 0) ) ? 45 : 36; end 
           1: 
 begin addr_ram <= (count2 < 22) ? 0 : count2 - 22; 
            
  addr_rom_coeff <= (count2 < 22) ? 45 : 37; end 
           2:
 begin addr_ram <= (count2 < 21) ? 0 : count2 - 21; 
            
  addr_rom_coeff <= ( (count2 < 22) || (count5 == 20) ) ? 45 : 38; end 
           3:
 begin addr_ram <= (count2 < 1) ? 0 : count2 - 1; 
            
  addr_rom_coeff <= (count5 == 0) ? 45 : 39; end 
           4:
 begin addr_ram <= count2; 
            
  addr_rom_coeff <= 40; end 
           5:
 begin addr_ram <= count2 + 1; 
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  addr_rom_coeff <= (count5 == 20) ? 45 : 41; end 
           6:
 begin addr_ram <= count2 + 21;  
            
  addr_rom_coeff <= ( (count5 == 0) || 
            
   ((count2 >= 462) && (count2 < 482)) ) ? 45 : 42; end 
           7:
 begin addr_ram <= count2 + 22; 
            
  addr_rom_coeff <= ((count2 >= 462) && (count2 < 482)) ? 45 : 43; end 
           8:
 begin addr_ram <= count2 + 23; 
            
  addr_rom_coeff <= ( ((count2 >= 462) && (count2 < 482)) || 
            
   (count5 == 20) )  ? 45 : 44; end 
           default:
 begin addr_ram <= 14'hxxxx; 
            
  addr_rom_coeff <= 6'hxx; end 
          endcase 
          end 
         end 
       end 
     end 
  write_ram2: begin state <= wait4; 
       accumr <= 0; 
       accumg <= 0; 
       accumb <= 0; 
       cs_ram <= 1; 
       oe_ram <= 1; 
       rw_ram <= 1; 
       busy_int <= (count0 == 1) ? 1 : 0; 
       busy_dec1 <= (count0 == 2) ? 1 : 0; 
       busy_dec2 <= (count0 == 3) ? 1 : 0; 
     end 
  wait4: begin 
     count3 <= count3 + 1; 
     if (count0 == 1) 
      begin if (L == 2'b01) 
         begin if (count2 == 
4095) 
          begin state <= 
idle; 
           
 busy_int <= 0; 
 
           
 count0 <= 0; 
           
 count2 <= 0; 
           
 count3 <= 0; 
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 count4 <= 1; end 
           else 
begin count2 <= count2 + 1; 
            
  state <= wait3; 
            
  busy_int <= 1; end 
         end 
        else if (L == 2'b10) 
         begin if (count2 == 
16383) 
          begin state <= 
idle; 
           
 busy_int <= 0; 
           
 count0 <= 0; 
           
 count2 <= 0; 
           
 count3 <= 0; 
           
 count4 <= 1; end 
           else 
begin count2 <= count2 + 1; 
 
            
  state <= wait3; 
            
  busy_int <= 1; end 
         end 
      end 
     else if (count0 == 2) 
      begin if (M == 1) 
         begin if (count3 == 
4095) 
          begin state <= 
idle; 
           
 busy_dec1 <= 0; 
           
 count0 <= 0; 
           
 count2 <= 0; 
           
 count3 <= 0; 
           
 count4 <= 1; end 
           else 
begin count2 <= count2 + 1; 
            
  state <= wait3; 
            
  busy_dec1 <= 1; end 
         end 
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        else if ((M == 2) || (M == 4)) 
         begin if (count3 == 
1023) 
          begin state <= 
idle; 
           
 busy_dec1 <= 0; 
           
 count0 <= 0; 
           
 count1 <= 0; 
           
 count2 <= 0; 
           
 count3 <= 0; 
           
 count4 <= 1; end 
           else 
 begin state <= wait3; 
            
  busy_dec1 <= 1; 
            
  if (count1 < 31) 
            
   begin count1 <= count1 + 1; 
            
     count2 <= count2 + 2; end 
            
  else if (count1 == 31) 
            
   begin count1 <= 0; 
            
     count2 <= count2 + 66; end 
            
 end 
         end 
        else if ((M == 3) || (M == 6)) 
          begin if (L == 
2'b01) 
           
 begin if (count3 == 483) 
            
 begin state <= idle; 
            
   busy_dec1 <= 0; 
            
   count0 <= 0; 
            
   count1 <= 0; 
            
   count2 <= 0; 
            
   count3 <= 0; 
            
   count4 <= 1; end 

 73



           
 else begin state <= wait3; 
            
   busy_dec1 <= 1; 
            
   if (count1 < 21) 
            
    begin count1 <= count1 + 1; 
            
      count2 <= count2 + 3; end 
            
   else if (count1 == 21) 
            
    begin count1 <= 0; 
            
      count2 <= count2 + 129; end 
            
  end 
           
 end 
           else if 
(L == 2'b10) 
           
 begin if (count3 == 1848) 
            
 begin state <= idle; 
            
   busy_dec1 <= 0; 
            
   count0 <= 0; 
            
   count1 <= 0; 
            
   count2 <= 0; 
            
   count3 <= 0; 
            
   count4 <= 1; end 
           
 else begin state <= wait3; 
            
   busy_dec1 <= 1; 
            
   if (count1 < 42) 
            
    begin count1 <= count1 + 1; 
            
      count2 <= count2 + 3; end 
            
   else if (count1 == 42) 
            
    begin count1 <= 0; 
            
      count2 <= count2 + 258; end 
            
  end 
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           end 
         end 
       end 
     else if (count0 == 3) 
      begin if (M == 4) 
         begin if (count3 == 
16639) 
          begin state <= 
idle; 
           
 busy_dec2 <= 0; 
           
 count0 <= 0; 
           
 count1 <= 0; 
           
 count2 <= 0; 
           
 count3 <= 0; 
           
 count4 <= 1; 
           
 count5 <= 0; end 
           else
 begin state <= wait3; 
            
  busy_dec2 <= 1; 
            
  if (count1 < 15) 
            
   begin count1 <= count1 + 1; 
            
     count2 <= count2 + 2; end 
            
  else if (count1 == 15) 
            
   begin count1 <= 0; 
            
     count2 <= count2 + 34; end 
            
 end          
         end 
        else if (M == 6) 
         begin if (count3 == 
16504) 
          begin state <= 
idle; 
           
 busy_dec2 <= 0; 
           
 count0 <= 0; 
           
 count1 <= 0; 
           
 count2 <= 0; 
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 count3 <= 0; 
           
 count4 <= 1; 
           
 count5 <= 0; end 
           else
 begin state <= wait3; 
            
  busy_dec2 <= 1; 
            
  if (count1 < 10) 
            
   begin count1 <= count1 + 1; 
            
     count2 <= count2 + 2; 
            
     count5 <= count5 + 2; end 
            
  else if (count1 == 10) 
            
   begin count1 <= 0; 
            
     count2 <= count2 + 24;  
            
     count5 <= 0;   end 
            
 end 
         end 
      end 
    end 
  default: state <= state; 
 endcase 
end 
endmodule 
 
6.2c Overall Resizer Module 
module finalproj(clock, reset, addr_rom, addr_ram, size, le_size, cs_rom, oe_rom, we_rom, 
 cs_ram, oe_ram, rw_ram, data_ram); 
input clock, reset, le_size; 
input [2:0] size; 
output cs_rom, oe_rom, we_rom, cs_ram, oe_ram, rw_ram; 
output [14:0] addr_rom, addr_ram; 
inout [7:0] data_ram; 
 
wire start_copy, start_int, start_dec1, start_dec2, busy_copy, busy_int, busy_dec1, busy_dec2; 
 
majorfsm majorfsm1(clock, reset, start_copy, start_int, start_dec1, start_dec2, busy_copy, 
 busy_int, busy_dec1, busy_dec2, size, le_size, oe_driver); 
minorfsm minorfsm1(clock, reset, start_copy, start_int, start_dec1, start_dec2, busy_copy, 
 busy_int, busy_dec1, busy_dec2, addr_rom, addr_ram, size, cs_rom, oe_rom, we_rom, cs_ram, 
 oe_ram, rw_ram, data_ram, oe_driver); 
 
endmodule 
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6.2d Filter Coefficients 
WIDTH = 8;  % WIDTH OF OUTPUT IS REQUIRED, ENTER A DECIMAL VALUE % 
DEPTH = 64;  % DEPTH OF MEMORY IS REQUIRED, ENTER A DECIMAL VALUE % 
 
 
ADDRESS_RADIX = HEX;  % Address and data radixes are optional, default is hex % 
DATA_RADIX = HEX;     % Valid radixes = BIN,DEC,HEX or OCT  % 
 
CONTENT BEGIN 
 00 : 00;  % L=1 % 
 01 : 00; 
 02 : 00; 
 03 : 00; 
 04 : 40; 
 05 : 00; 
 06 : 00; 
 07 : 00; 
 08 : 00;   
 09 : 15;  % L=2 % 
 0A : 00;   
 0B : 15; 
 0C : 2A; 
 0D : 54; 
 0E : 2A; 
 0F : 15;  
 10 : 00;   
 11 : 15; 
 12 : 00;  % M=1 % 
 13 : 00; 
 14 : 00; 
 15 : 00; 
 16 : 40; 
 17 : 00; 
 18 : 00; 
 19 : 00; 
 1A : 00; 
 1B : 06;  % M=2 % 
 1C : 0A; 
 1D : 06; 
 1E : 06; 
 1F : 20; 
 20 : 06;   
 21 : 06; 
 22 : 0A; 
 23 : 06; 
 24 : 05;  % M=3 %  
 25 : 0C; 
 26 : 05; 
 27 : 05; 
 28 : 20; 
 29 : 05; 
 2A : 05; 
 2B : 0C; 
 2C : 05; 
 2D : 00; % start 0 values %  
 2E : 00; 
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 2F : 00; 
 30 : 00;   
 31 : 00; 
 32 : 00; 
 33 : 00; 
 34 : 00; 
 35 : 00; 
 36 : 00; 
 37 : 00; 
 38 : 00; 
 39 : 00; 
 3A : 00; 
 3B : 00; 
 3C : 00; 
 3D : 00; 
 3E : 00; 
 3F : 00; 
  
END; 
 
6.3 Video Controller Unit 
 
6.3a 6bit Reg 
module 6bitreg(clk,rgb_in,rgb_out); 
 
input clk,reset; 
input [5:0] rgb_in; 
output [5:0] rgb_out; 
 
always @ (posedge clk) 
begin 
 rgb_out[5:0] <= rgb_in[5:0]; 
end 
 
endmodule 
 
6.3b Line Reg 
module line_reg (clk,reset,width,x_coor,frame_done,xt,ld,rom_addr_in,rom_addr_out,x_hit); 
 
input clk, reset; 
input frame_done; 
input [8:0] width,x_coor,xt; 
input [18:0] rom_addr_in; 
output [18:0] rom_addr_out; 
input ld; 
output x_hit; 
 
 
reg [8:0] w_reg; 
reg [8:0] x_reg; 
reg [18:0] rom_addr_out; 
reg x_hit; 
 
//the "commented out" portions below will be put in another module. 
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//assign rom_addr = mem_addr + (yt - y_coor) * width - x_coor;  
 
//assign y_hit = (yt <= y_coor + height) && (yt >= y_coor); 
 
always @ (posedge clk) begin 
 
if ((xt >= x_reg) && (xt < x_reg + w_reg)) x_hit <= 1; 
 else x_hit <= 0; end  
 
//assign x_hit = (xt >= x_reg) && (xt < x_reg + w_reg); //x_coor is temporary and only appears when ld is 
enabled. 
            
   //the 2nd part is xt "<" NOT "<=" because then add one extra pixel 
always @ (posedge clk)          //because the 1st 
part is xt >= x_reg;  
begin 
 if (reset || frame_done) begin //when reset, want to clear the registers, x_reg want to be large so 
won't accidentally get a xhit. 
  w_reg <= 0; 
  x_reg <= 9'b111111111; 
  rom_addr_out <= 0;   
 end else 
 if (ld) begin  
  w_reg <= width; //store the following 3 lines into registers to hold/remember the values, 
when finding xhit,etc. 
  x_reg <= x_coor; 
  rom_addr_out <= rom_addr_in;   
 end 
end 
 
endmodule 
 
 
6.3c Overall 
module overall 
(clk,reset,ready_sprite,sprite_no,size,x_coor_in,y_coor_in,process_done,y_hit,count,rom_addr_in, 
rom_addr_out, width,srt_sprite,frame_done,xt,yt, hsync, vsync,rgb_in, rgb_out,oe1,oe2,oe3,oe4,ld1,ld2, 
ld3,ld4,ld5,ld6,ld7,ld8,ld9,ld10,enemy_enable,hreset,x_hit1,x_hit2,x_hit3,x_hit4); 
input clk,reset,ready_sprite,process_done; 
//input [18:0] mem_addr; 
input [4:0] sprite_no; 
input [8:0] x_coor_in; 
input [7:0] y_coor_in; 
output [5:0] rgb_out; 
output[8:0] xt; 
output[9:0] yt; 
output [8:0] width; 
input [2:0] size; 
input [5:0] rgb_in; 
output [18:0] rom_addr_in,rom_addr_out; 
output srt_sprite,frame_done,y_hit,hsync, 
vsync,oe1,oe2,oe3,oe4,ld1,ld2,ld3,ld4,ld5,ld6,ld7,ld8,ld9,ld10*/,hreset,x_hit1,x_hit2,x_hit3,x_hit4; 
output [3:0] count; 
reg ld1,ld2,ld3,ld4,ld5, ld6,ld7,ld8,ld9,ld10; 
 
reg [4:0] sprite_no_reg; 
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reg [8:0] x_coor; 
reg [7:0] y_coor; 
 
wire [18:0] rom_addr_out1, rom_addr_out2, rom_addr_out3, rom_addr_out4, rom_addr_out5; 
wire [18:0] rom_addr_out6, rom_addr_out7, rom_addr_out8, rom_addr_out9, rom_addr_out10; 
 
wire ld,hblankon,vblankon; 
wire [8:0] width,xt; 
wire [7:0] height; 
wire [9:0] yt; 
wire [4:0] sprite_no; 
wire [18:0] mem_addr; 
reg srt_sprite; 
 
reg [18:0] rom_addr_in; 
 
//the only thing that is changing when you're sweeping across the screen in the above line is yt. Note that 
y_coor  
//(from the game controller) assumes that the vertical is 240. yt from sync_gen goes to 480. Also my sprites 
in the  
//roms are assuming that vertical is 240. Therefore, inorder to have the double the lines to 480, you divide 
yt by 2 
//or shift one bit. doing that means i.e. when yt is at 0, it's 0. and when yt is at 1, also 0. so you get same  
//stuff from rom.  
 
always @ (posedge clk) begin 
srt_sprite <=0; 
if (yt < 479 && process_done && hblankon) 
 srt_sprite <= 1; 
 end 
 
assign frame_done = vblankon; //at reset, vblankon is high therefore frame_done is high, so lynne can 
process. (see sync_gen) 
 
assign y_hit = ready_sprite? (yt[9:1] >= y_coor) && (yt[9:1] <= y_coor + height) && !(sprite_no_reg==0): 
0; //sprite_no = 0 means no data in sprite. 
 
//reg y_hit_reg; 
reg [3:0] count; 
 
line_reg line_reg1(clk,srt_sprite,width,x_coor,frame_done,xt,ld1,rom_addr_in,rom_addr_out1,x_hit1); 
//have srt_sprite as reset, because have to  
line_reg line_reg2(clk,srt_sprite,width,x_coor,frame_done,xt,ld2,rom_addr_in,rom_addr_out2,x_hit2); 
//clear the registers each time you go to a new 
line_reg line_reg3(clk,srt_sprite,width,x_coor,frame_done,xt,ld3,rom_addr_in,rom_addr_out3,x_hit3); 
//new line 
line_reg line_reg4(clk,srt_sprite,width,x_coor,frame_done,xt,ld4,rom_addr_in,rom_addr_out4,x_hit4); 
line_reg line_reg5(clk,srt_sprite,width,x_coor,frame_done,xt,ld5,rom_addr_in,rom_addr_out5,x_hit5); 
line_reg line_reg6(clk,srt_sprite,width,x_coor,xt,ld6,rom_addr_in,rom_addr_out6,x_hit6); 
line_reg line_reg7(clk,srt_sprite,width,x_coor,xt,ld7,rom_addr_in,rom_addr_out7,x_hit7); 
line_reg line_reg8(clk,srt_sprite,width,x_coor,xt,ld8,rom_addr_in,rom_addr_out8,x_hit8); 
line_reg line_reg9(clk,srt_sprite,width,x_coor,xt,ld9,rom_addr_in,rom_addr_out9,x_hit9); 
line_reg line_reg10(clk,srt_sprite,width,x_coor,xt,ld10,rom_addr_in,rom_addr_out10,x_hit10);  
 
sixbitreg mysixbitreg(clk,rgb_in,rgb_out); 
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sprite_table sp_table(.sprite_no(sprite_no), .clk(clk), 
.size(size),.mem_addr(mem_addr),.width(width),.height(height)); 
sync_gen mysync_gen(clk,reset,hsync,vsync,hblankon,vblankon,xt,yt,hreset); 
 
 
 
always @ (mem_addr or yt or y_coor or width or x_coor or count) begin 
rom_addr_in[16:0] <= mem_addr[16:0] + ((yt[9:1] - y_coor) * width) - x_coor; //not width - 1 (which is 
changed in line_reg) 
rom_addr_in[18:17] <= mem_addr[18:17];        
   //changing "width" here changes the address getting in the rom.  
 
ld1 <= (count==0) & y_hit;//before had count start at 1 and go to 10, but then the 1st sprite that gets 
ld2 <= (count==1) & y_hit;//hit, would not be loaded, cause count isn't in effect, until clk cycle after, 
ld3 <= (count==2) & y_hit;//but by then the next sprite will come up since lynne gives me one every clk 
cycle 
ld4 <= (count==3) & y_hit;//for 32 clk cycles. to solve the problem start at count equals 0. 
ld5 <= (count==4) & y_hit; 
ld6 <= (count==5) & y_hit; 
ld7 <= (count==6) & y_hit; 
ld8 <= (count==7) & y_hit; 
ld9 <= (count==8) & y_hit; 
ld10 <= (count==9) & y_hit; 
 
end 
 
always @ (posedge clk) begin 
x_coor <= x_coor_in; //make everything in rom_addr_in above delayed by one clk cycle (i.e. 
x_coor,y_coor,sprite_no) 
y_coor <= y_coor_in; 
sprite_no_reg <= sprite_no; 
 
if (srt_sprite)  
 count <= 0; 
else if (ready_sprite && y_hit) 
 count <= count + 1; 
 
end 
//end of clock 
 
 
//reg [18:0]rom_addr; //rom_addr defaults to a wire if don't declare it as a register and just one bit. o.w. if 
>1 bit, declare as wire. 
reg [18:0] rom_addr_out; 
 
//always @ (x_hit1 or x_hit2 or x_hit3 or x_hit4 or x_hit5) /*or x_hit6 or x_hit7 or x_hit8 or x_hit9 or 
x_hit10)*/  begin  
 always @ (posedge clk) begin 
 if (x_hit1) 
  rom_addr_out<= rom_addr_out1 + xt; 
 else if (x_hit2) 
  rom_addr_out <= rom_addr_out2 + xt; 
 else if (x_hit3) 
  rom_addr_out <= rom_addr_out3 + xt; 
 else if (x_hit4) 
  rom_addr_out <= rom_addr_out4 + xt; 
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 else if (x_hit5) 
  rom_addr_out <= rom_addr_out5 + xt; 
 else if (x_hit6) 
  rom_addr_out <= rom_addr_out6 + xt; 
 else if (x_hit7) 
  rom_addr_out <= rom_addr_out7 + xt; 
 else if (x_hit8) 
  rom_addr_out <= rom_addr_out8 + xt; 
 else if (x_hit9) 
  rom_addr_out <= rom_addr_out9 + xt; 
 else if (x_hit10) 
  rom_addr_out <= rom_addr_out10 + xt;*/ 
 
 else begin rom_addr_out[16:0] <= xt+yt[9:1]*320; //if no hits, pixel is background 
      rom_addr_out[18:17] <= 2; end 
 
 
end 
 
/*reg oe; 
reg oe1,oe2,oe3,oe4; 
 
always @ (posedge clk) begin ' //the following was initially used to register the outputs of the 
          //pixel data because there were many lines 
on the screen, which was  
          //initially thought of as a timing problem 
of the video controller. 
          //it turned out that it was the game 
controller's problem, and the  
          //registering of the outputs was not as 
neccesary as once thought. 
if (rom_addr_out[18:17] == 0)  begin 
 oe1 <= 0; oe2 <= 1; oe3 <= 1; oe4 <= 1;  end 
if (rom_addr_out[18:17] == 1)  begin 
 oe1 <= 1; oe2 <= 0; oe3 <= 1; oe4 <= 1;  end 
if (rom_addr_out[18:17] == 2)  begin 
 oe1 <= 1; oe2 <= 1; oe3 <= 0; oe4 <= 1;  end 
if (rom_addr_out[18:17] == 3)  begin 
 oe1 <= 1; oe2 <= 1; oe3 <= 1; oe4 <= 0;  end  
 
end */ 
 
assign oe1 = (rom_addr_out[18:17] == 0)? 0:1; 
assign oe2 =  (rom_addr_out[18:17] ==1)? 0:1; 
assign oe3 = (rom_addr_out[18:17] ==2)? 0:1;  
assign oe4 = (rom_addr_out[18:17] ==3)? 0:1;  
 
 
//end // 
/*always @(rom_addr_in) 
rom_addr_out <= rom_addr_in;*/ //did these 2 commented lines out before because we commented out the 
whole x_hit block 
          //block of code and the block of 
instantiations of line_reg code because we were trying 
          //to figure out something that was wrong 
(not requiring those codes) and compilation 
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          //was taking forever, that why we did this 
adhoc method.  
//wire [2:0] size; 
output enemy_enable; 
//assign enemy_enable = (y_coor > height + yt) && (sprite_no == 6); 
//assign size = ((yt == y_coor + height) && sprite_no == 6) ? size + 1 
assign enemy_enable = (yt == y_coor + height + 1) && (sprite_no == 6); 
 
 
endmodule 
 
6.3d Sprite_Table 
module sprite_table(sprite_no, clk, size, mem_addr, width, height); 
input [3:0] sprite_no; 
input clk; 
input [2:0] size; 
 
output [18:0] mem_addr; 
 
output [8:0] width; 
output [7:0] height; 
 
reg [18:0] mem_addr, mem_addr_size; 
 
reg [8:0] width, width_size; 
reg [7:0] height, height_size; 
 
always @(posedge clk) begin 
 
case (sprite_no) 
15: //road frame 1 
begin 
mem_addr[18:17] <= 2'b00; 
mem_addr[16:0] <= 0; 
//width <= 4; 
//height <= 3; 
width <= 240; 
height <= 240; 
end 
14: //road frame 2 
 
begin 
mem_addr [18:17] <= 2'b00; 
mem_addr[16:0] <= 57600; 
width <= 240; 
height <= 240; 
end 
13: //road frame 3 
begin 
mem_addr[18:17] <= 2'b01; 
mem_addr[16:0] <= 0; 
//mem_addr <= 115201; 
width <= 240; 
height <= 240; 
end 
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12: //road frame 4 
begin 
mem_addr[18:17] <= 2'b01; 
mem_addr[16:0] <= 57600; 
//mem_addr <= 172801; 
width <= 240; 
height <= 240; 
end 
11: //powerup frame 
begin 
mem_addr[18:17] <= 2'b10; 
mem_addr[16:0] <= 76800; 
//mem_addr <= 94604; 
width <= 12; 
height <= 12; 
end 
10: //enemy frame 
begin 
mem_addr <= mem_addr_size; 
width <= width_size; 
height <= height_size; 
end 
9: //bullet frame 
begin 
mem_addr[18:17] <= 2'b10; 
mem_addr[16:0] <= 77952; // 1205; 
//mem_addr <= 78005; 
width <= 7; 
height <= 7; 
end 
8: //log frame 
begin 
mem_addr[18:17] <= 2'b10; 
mem_addr[16:0] <= 78001; // 1009;  
//mem_addr <= 77809; 
width <= 14; 
height <= 14; 
end 
7: //mit frame 
begin 
mem_addr[18:17] <= 2'b10; 
mem_addr[16:0] <= 78197; 
//mem_addr <= 90604; 
width <= 80; 
height <= 50; 
 
end 
6: //beaver frame 
begin 
mem_addr[18:17] <= 2'b10; 
mem_addr[16:0] <= 76944; 
//mem_addr <= 76801; 
width <= 42; 
height <= 24; 
end 
5: //life frame #1 
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begin 
mem_addr[18:17] <= 2'b10; 
mem_addr[16:0] <= 92872; 
//mem_addr <= 78054; 
width <= 45; 
 
height <= 15; 
end 
4: //life frame #2 
begin 
mem_addr[18:17] <= 2'b10; 
mem_addr[16:0] <= 92422; //1929; 
//mem_addr <= 78729; 
width <= 30; 
height <= 15; 
end 
3: //life frame #3 
begin 
mem_addr[18:17] <= 2'b10; 
mem_addr[16:0] <= 92197; //2379; 
//mem_addr <= 79179; 
width <= 15; 
height <= 15; 
end 
/*14: //score digit: 0  //the following commented out lines got deleted because  
begin     //we opted out of displaying the score in the end. 
mem_addr[18:17] <= 2'b10; 
mem_addr[16:0] <= 2604; // 
//mem_addr <= 79404; 
width <= 8; 
height <= 15; 
end 
15: //score digit: 1 
begin 
mem_addr[18:17] <= 2'b10; 
mem_addr[16:0] <= 2724; 
//mem_addr <= 79524; 
width <= 8; 
height <= 15; 
end 
16: //score digit: 2 
begin 
mem_addr[18:17] <= 2'b10; 
mem_addr[16:0] <= 2844; 
//mem_addr <= 79644; 
width <= 8; 
height <= 15; 
end 
17: //score digit: 3 
begin 
mem_addr[18:17] <= 2'b10; 
mem_addr[16:0] <= 2964; 
//mem_addr <= 79764; 
width <= 8; 
height <= 15; 
end 
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18: //score frame: 4 
begin 
mem_addr[18:17] <= 2'b10; 
mem_addr[16:0] <= 3084; 
//mem_addr <= 79884; 
width <= 8; 
height <= 15; 
end 
19: //score frame: 5 
begin 
mem_addr[18:17] <= 2'b10; 
mem_addr[16:0] <= 3204; 
//mem_addr <= 80004; 
width <= 8; 
height <= 15; 
end 
20: //score frame: 6 
begin 
mem_addr[18:17] <= 2'b10; 
mem_addr[16:0] <= 3324; 
//mem_addr <= 80124; 
width <= 8; 
height <= 15; 
end 
21: //score frame: 7 
begin 
mem_addr[18:17] <= 2'b10; 
mem_addr[16:0] <= 3444; 
//mem_addr <= 80244; 
width <= 8; 
height <= 15; 
end 
22: //score frame: 8 
 
begin 
mem_addr[18:17] <= 2'b10; 
mem_addr[16:0] <= 3564; 
//mem_addr <= 80364; 
width <= 8; 
height <= 15; 
end 
23: //score frame: 9 
begin 
mem_addr[18:17] <= 2'b10; 
mem_addr[16:0] <= 3684; 
//mem_addr <= 80484; 
width <= 8; 
height <= 15; 
end */ 
2: //"you win" frame 
begin 
mem_addr[18:17] <= 2'b10; 
mem_addr[16:0] <= 82197; 
//mem_addr <= 85604; 
width <= 100; 
height <= 50; 
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end 
1: //"game over" frame 
begin 
mem_addr[18:17] <= 2'b10; 
mem_addr[16:0] <= 87197; 
//mem_addr <= 80604; 
width <= 100; 
height <= 50; 
end 
/*16: //"background" frame //not needed, taken care of in overall module 
begin 
mem_addr[18:17] <= 2'b10; 
mem_addr[16:0] <= 0;  
width <= 320; 
height <= 240; 
end*/ 
default: begin 
mem_addr[18:0] <= 19'b10xxxxxxxxxxxxxxxxx; //in default, better to do "xxxx..." then 
width <= 9'bxxxxxxxxx;        //actual numbers, because the timing/logic 
cells less. 
height <= 8'bxxxxxxxx; 
end 
endcase 
 
end 
 
always @(size) 
case (size) 
   3'b000: begin width_size <= 64; 
     height_size <= 64;  
     mem_addr_size[18:17] <= 2'b11; 
     mem_addr_size[16:0] <= 0; end 
   3'b001: begin width_size <= 43; 
     height_size <= 43; 
     mem_addr_size[18:17] <= 2'b11; 
     mem_addr_size[16:0] <= 0; end 
   3'b010: begin width_size <= 32; 
     height_size <= 32; 
     mem_addr_size[18:17] <= 2'b11;  
     mem_addr_size[16:0] <= 0; end 
   3'b011: begin width_size <= 22; 
     height_size <= 22; 
     mem_addr_size[18:17] <= 2'b11;  
     mem_addr_size[16:0] <= 0; end 
   3'b100: begin width_size <= 16; 
     height_size <= 16;  
     mem_addr_size[18:17] <= 2'b11; 
     mem_addr_size[16:0] <= 16384; end 
   3'b101: begin width_size <= 11; 
     height_size <= 11;  
     mem_addr_size[18:17] <= 2'b11; 
     mem_addr_size[16:0] <= 16384; end 
   default: begin width_size <= 9'bxxxxxxxxx; 
                  height_size <= 8'bxxxxxxxx; 
                  mem_addr_size <= 19'bxxxxxxxxxxxxxxxxxxx; end 
endcase 
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endmodule 
 
6.3e Sync_Gen 
module sync_gen(clk,reset,hsync,vsync,hblankon,vblankon,hcount,vcount,hreset); 
  input clk; //12 mhz 
  input reset; 
  output hsync, vsync, hblankon, vblankon,hreset; 
  //output [5:0] rgb; 
  output [8:0] hcount; 
  output [9:0] vcount; 
 
  reg hsync,vsync,hblank,vblank;  
  reg [8:0] hcount;      // pixel number on current line 
  reg [9:0] vcount;  // line number 
  //screen is 320 by 480; 
 
  wire en; 
  assign en = 1; 
 
  // horizontal: 381 pixels = 31.76us  // 381/31.76us = 12mhz 
  // display 320 pixels per line 
 wire hsyncon,hsyncoff,hreset,hblankon; 
  
 assign hblankon = en & (hcount == 307);     
 assign hsyncon = en & (hcount == 313); 
 assign hsyncoff = en & (hcount == 358); 
 assign hreset = (en & (hcount == 380)); 
 
 // vertical: 528 lines = 16.77us 
 // display 480 lines 
 wire vsyncon,vsyncoff,vreset,vblankon; 
   
 assign vblankon = (hreset & (vcount == 479)); //|| reset; //you could of added the reset signal in this line 
except  
                                                 //since good practice to initilize states when reset, 
might as well  
                  
 //make vblankon high implicitly in reset (see below lines of code)     
 assign vsyncon = hreset & (vcount == 492);    
 assign vsyncoff = hreset & (vcount == 494); 
 assign vreset = hreset & (vcount == 527); 
 
  // sync and blanking 
  always @(posedge clk) begin 
 if (reset) begin //Lynne gives me a "fake" reset, a reset that she sets, which happens when I give 
her frame_done. 
   hcount <= 380; //ALWAYS initialize all your states (registers) when reset.  
  vcount <= 479; //when hcount is 380 and vcount is 479, vblankon becomes high, and 
done_frame is high--> see overall 
 end 
 else begin 
     hcount <= en ? (hreset ? 0 : hcount + 1) : hcount; 
     hblank <= hreset ? 0 : hblankon ? 1 : hblank; 
     hsync <= hsyncon ? 0 : hsyncoff ? 1 : hsync;   // hsync is active low 
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     vcount <= hreset ? (vreset ? 0 : vcount + 1) : vcount; 
     vblank <= vreset ? 0 : vblankon ? 1 : vblank; 
     vsync <= vsyncon ? 0 : vsyncoff ? 1 : vsync;   // vsync is active low 
   end 
 end 
//////////////////following used to test random output onto screen//////////////////////////// 
//reg [5:0] rgb; 
 
//color bars 
//always @ (hcount) begin 
//if (vblank | (hblank & ~hreset)) rgb <= 0; 
//else 
   //rgb <= hcount[7:2]; //by moving it down each color bar gets skinnier and therefore repeats itself more. 
i.e. from  
        //hcount[8:3] to hcount[7:2] to hcount[6:1] 
//end 
//////////////////////////////////////////////////////////////////////////////////////////// 
 
  endmodule 
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