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Abstract 
 The  aim  was  to  develop  a  system  that  could  determine  the  position  and

orientation of a piece of paper by using a video feed to compute the coordinates of the
corners.  Currently, the output of the system is in the form of a VGA display with an
overlay at the detected corners.  We would like to eventually improve on the accuracy and
sophistication of the system and eventually add a motor controller that points a laser at
the paper, creating a hybrid display consisting of a dynamic overlay superimposed on a
static background.
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Overview
The main goal of the system was to determine the position and orientation of a piece of
paper by applying a corner detection algorithm an incoming video feed.  The incoming
frames are stored in on-board RAM, where it can be accessed by the corner detection
module. For developing, testing and debugging the corner detection algorithm, a video
output module was required to display the image at different stages of processing.

The system was implemented on a Xilinx Spartan-3 Starter Kit development board,
containing a 200,000 gate-equivalent Spartan-3 FPGA, 2 256x16 10ns memory chips, as
well as a range of buttons, indicators and connectors.  The FPGA was clocked using the
on-board 50Mhz crystal oscillator.  Development was done in Verilog using the bundled
Xilinx ISE WebPack integrated development environment.

Description 

Memory Timings

The system makes use of the on-board 10ns RAM found on the Spartan-3 Starter Board.
The memory was configured as a single 256x16 memory space.  Initially we envisioned
the system containing a multitude of blocks requiring access to the memory, and thus we
decided on a time-sharing method for partitioning access to the memory.  Based on the
timing of the input, memory access time was divided into 16 8-clock cycle partitions.
Each module can access the memory during its alloted single or multiple partition.

A timing bus was distributed throughout the system allowing the different modules to
determine if they can make use of the memory.  Initially a 4-bit bus was distributed
identifying the current partition ID, but it was later recognized that for modules involving
complex state (such as the edge detection module), it was necessary to have available
more detailed timing information to avoid starting a memory transaction just before
access is transitioned to another module.  Thus a full 7-bit 50Mhz counter was exposed to
the system, with the top 4 bits indicating the current partition, and the lower 3 bits
indicating how far along the 8-clock cycle partition has progressed. The timing is
generated by the composite_in module, and all other modules must be capable of
synchronizing their memory access accordingly.

A memory manager module rewires the memory interface based on the current partition,
exposing a simple virtual memory interface to each of the modules, which includes an
address bus, data bus, as well as the appropriate output enable or write enable signals.

The current slice assignments for memory access are show in Table 1.

The memory is used to store 4800 16-bit words, representing a 320x240 black-and-white
image grouped as 16 pixels/word.  A line will contain 20 such blocks, and there are a
total of 240 lines.  The image is stored in memory starting at address 0. 
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Table 1 - Memory access partitioning

Partition
ID 0x0 0x1 0x2 0x3 0x4 - 0xE 0xF

active
module

vga_out unassigned edge_ follow edge_ follow unassigned composite_in

External components

Grayscale NTSC Camera
This camera delivers a 60 hertz grayscale interlaced NTSC composite signal.  A
75 ohms  termination resistor is applied and the signal is fed to the GS4981 and
the AD775. 

Gennum GS4981
This monolithic sync separator outputs vertical and horizontal syncs from a
composite input.

AD775
This high speed 8 bit sampling analog to digital converter digitizes luminescence
values from the camera that are output to the FPGA.

VGA Monitor
A standard VGA monitor connects to the FPGA to display contents of video as it
is read from SRAM

Components implemented within FPGA

The diagram of the functional blocks implemented on the FPGA are shown in Figure 1.
The functionality and implementation details for each functional block are discussed in
the following sections.
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Memory Manager   - Ali

This module interfaces with the SRAM directly, and all blocks that need memory
access interface through this block.  The video memory is stored 16 pixels at a time.  This
means that the data bus going to the SRAM is 16 bits wide.  The address bus is 18 bits,
but the five most significant bits of the address are tied to ground since we only need 13
bits to write to 4800 different SRAM address to result in a memory of 320x240 pixels.
This represents one frame of video at the resolution with which we are working.  The
pixel clock used in the component_in block samples the input every 8 clock cycles, so it
was decided that it would be appropriate to partition memory access into blocks of 8
clock cycles.  Since data must be written once every 16 pixels and each pixel is 8 clock
cycles, the memory manager divides memory access into 16 blocks of 8 cycles.  Each
module would then be allowed to access memory in a round-robin fashion during one of
these 16 blocks which would be dedicated to that module alone.  The advantage of this is
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that there is a synchronized way to make sure no modules attempt memory access at the
same time.  Also, this means that without modifying our design, we could easily add up to
16 modules which need access to the same memory.  Under the current implementation,
the component_in block access memory when the pixel count reaches the last pixel (pixel
count = 15) and the VGA_out block accesses memory on the pixel count of zero.  The
other 14 are reserved for the edge following module and any other modules that could be
added in the future.  The memory manager itself is composed entirely of combinational
logic.  Its inputs are the address buses, data buses, we, and oe of each of the modules that
use it.  It also has the global pixel counter input which partitions access time.  Using this
last variable, it switches pathways between the SRAM and each of the modules
depending on which module’s turn it is to access memory. 

Composite In - Ali, Radu

This module is responsible for storing image data in the SRAM for analysis and
display purposes.  It also generates the global counter mem_clk which is used to control
memory access by the different block.  It is a seven bit variable whose value increases by
one each clock cycle and rolls over to zero again after its largest value.  The three least
significant bits allow eight steps for reading or writing to SRAM and divides the clock to
6.125 MHz so that it can sample video at the appropriate rate.  The four most significant
bits create a cycle of sixteen stages.  In each of these stages one module gets access to the
SRAM.  Also, in each of these stages, a new pixel from either the camera feed or the
generated image is being stored in a buffer so that when it comes time for component_in
to write to the SRAM, it will have a block of sixteen pixels available.

One of the inputs to this module is a toggle button.  This button switches the
image source between generating a predefined static image or grabbing video data from
the NTSC camera.

Static Image Generator - Ali

When the toggle button is switched on, the image being written to SRAM takes
the form of a tilted rectangle.  The image is supposed to represent the video input of the
piece of paper until more sophistication can be built into the system.  The purpose for this
image is to test the VGA_out module to make sure that information is being correctly
written and retreated and displayed to the monitor.  It’s primary function however is to be
a base case for the edgefollow module to operate on.  The system first attempts to find the
corners of an image with no noise or movement and then can be tested on a moving
image from the camera.  The image “border” is an the OR of the four line segments
which make it up.  The x and y coordinates of the four points are designated in the
following table

Table 2 - Static Image Coordinates

X1 X2 X3 X4 Y1 Y2 Y3 Y4
18 300 290 18 4 25 221 200
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These coordinates correspond to a 320x240 grid with the origin in the upper left corner.
The four lines were represented in point-slope form as a function of the current x and y
position of the pixel being written to a buffer called “recent” which is written to SRAM
after the sixteenth pixel.  The equations for the lines take the form of 
((py-Y1)/2 == (ma*(px-X1)/8192))
after running a check to see if px and py are in the correct range.  In other words, if you
have a line segment connecting two points, you don’t want the x-coordinate of any point
to be greater than the x-coordinate of the rightmost point or less than the x-coordinate the
leftmost point.  The same reasoning applies to the vertical dimension.  A division by two
on both sides of the equation causes a shift right that chops off the least significant bit.
This gives the border a width of two in the vertical dimension.  The slope is precalculated
to be ma/4096.  The reason for the division by a large power of two is to avoid having to
multiply or divide by a decimal value.  Ma is the slope scaled by 4096, and the division
causes a shift right which gives an approximation that is accurate to the nearest pixel.  For
the two lines that have very large slopes, the process is repeated by expressing the
equation as a comparison between x and a function of y.  The reason for this switch in
convention is that we can use the division by two like before, but now it gives a width of
two in the horizontal dimension.  For each of the four line segments, the ordering of the
terms changes around slightly to avoid negative numbers.  Although the image does not
change, the SRAM is still constantly updated as though it were a true video feed, which
brings us to the next part of this module. 

Camera Input - Ali, Radu

The composite_in module normally receives signals from the camera to store to
SRAM for processing.  These signals include eight data bits which carry luminescence
information, as well as two bits for vertical syncs and horizontal syncs from the camera.
The two syncs are extracted from the composite signal and fed to this module by the
GS4981.  The eight data bits are provided by the AD775 Analog to Digital converter,
which is the modules clocked at 6.125 MHz.  Data is read from this chip as soon as its
clock goes low, this ensures sampling in the center of a data point.  

Figure 2 - AD775 Timings

This eight bit data is compared with an eight bit adjustable threshold which it the output
of the threshold_select module.  The result, a black and white pixel derived with an
adjustable threshold, is stored to a buffer every eight clock cycles that the camera signal
represents active video.  Whether or not this is true is determined by the vertical and
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horizontal syncs. For each, a register is dedicated to remembering the value of the sync
signals in the last clock cycle.  When this register is low and the current signal is low, this
marks the first clock cycle after the positive edge of the sync signal.  The positive edge of
the vertical sync represents the start of a frame and the positive edge of the horizontal
sync represents the start of a line.  Now let’s examine the horizontal sync more closely. 

Figure 3 - Horizontal Sync Timing

According to the NTSC specifications, which were confirmed using an oscilloscope, the
start of the active video region for each line is 4.7 microseconds after the rise of the
hsync.  At 6.125 MHz, which corresponds to 8 cycles of our 50 MHz clock, this
corresponds to 28.8 cycles.  This means that if we start incrementing a counter named
hcount every eight clock cycles after the rise of the hsync, we have to wait at least until
the counter reaches 29 before we can consider the data to be valid pixel information.  The
video time of 52.6 microseconds occurs during an interval of about 322 increments of
hcount.  This is perfect for our desired horizontal resolution of 320 pixels.  We simply
crop out the couple of pixels at the edges.  In fact, this is the reason that we chose a clock
divider of eight on a 50 MHz clock.  Vcount is a counter which increments whenever
hcount comes to the beginning of a new line.  Since there are 262.5 lines per field and we
only need 240 lines per frame, we consider the video region to be when vcount is between
15 and 254.  Also, hcount must be between 31 and 350.  In order to reference pixels
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correctly, we do not consider them to be at coordinates of hcount and vcount.  Instead we
consider xcor and ycor which are basically (hcount – 31) and (vcount – 15) respectively.
This way, the first pixel will be at the origin of xcor and ycor.  These values are used to
reset or increment the SRAM address.  

As video data comes in, it gets stored in a 16 bit register named vid_buffer.  The
position within vid_buffer that each pixel gets written to is determined by the four least
significant bits of xcor.  When the four least significant bits of xcor are all ones, the
buffer has filled up and it copies itself into another register named vid_bufferold.  Also,
the SRAM address will increase by one at this point, unless the xcor is 15 and the ycor is
0.  If this is the case, the SRAM address is reset to zero.  This system ensures that there
will always be an SRAM address and sixteen consecutive values in vid_bufferold which
correspond to that SRAM address.  Also, the mapping of the SRAM address and the
position on the camera image is constant.  Addresses zero through 19 represent the first
line of 320 pixels.  Addresses 20 through 39 represent the 320 pixels on the second line
and so forth.

Both even and odd fields were used from the camera.  This causes at most a
wobble of one pixel up and down but this was not a major concern.  The benefit of using
both even and odd fields is that it simplifies the code and doubles the update rate to 60
Hz.

VGA out - Ali, Radu

The VGA_out module displays the contents of the SRAM to VGA monitor with
an overlay of red point coordinates from the edgefollow module.  The output is a 3-bit per
pixel, 60 frames per second image stream at a resolution of 640x480.  This is four times
the resolution of the data we’ve stored to SRAM meaning each pixel must be displayed
twice per line and in turn each line must be shown twice.  

The output is clocked according to the VGA timing specifications.  A 60Hz
640x480 display requires a 25MHz clock, which is half of the FPGA clock frequency.
The VGA output module uses a horizontal pixel counter and a vertical line counter to
produce the appropriate signal timings.  

Vertical timing is controlled through the value of the register vcount. The register
is incremented each time a new video line is started.  Out of the total 573 lines of a
frame, lines 0-479 correspond the active  video region, followed by the front porch (lines
480-492), the vertical sync area (lines 493-494) and the back porch (lines 495-572).

The horizontal timing is slightly more complex since it must be synchronized with
the memory access division clock.  The horizontal counter is normally incremented at
25Mhz (half of the system clock).  Since producing a sync signal commits us to
outputting a video line, the sync signal is delayed until the beginning of the line will
happen just after we have read the first block of data pixels from memory.  Thus each
active line starts with the sync signal (pixels 0-96),  followed by the back porch (pixels
97-142), and the active video region (pixels 143-783).  After the active video region is
displayed, the block enters the front porch area, waiting until the memory clock indicates
a value of 97.  From this point, we know that we would have just completed a memory
read for the first 32 pixels of data in exactly 248 clock cycles (just as we enter the next
active video region when hsync reaches a value of 143).

Table 2 :     
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Table 4 - VGA Vertical Timing (640x480 60Hz)

Total frame time 16.68 ms
Sync length 0.06 ms
Back porch 1.02 ms
Active video time 15.25 ms
Front porch 0.35 ms

The memory access occurs when the on memory partition zero, as indicated by the
4 most significant bits of the input mem_clk.   Memory is accessible only every 128 sytem
clock cycles,  and a 320x240 output on a 640x480 screen requires that a different pixel be
output every 4 clock cycles.  Thus during the eight clock cycle memory access period,
two reads are performed resulting in a buffer containing the next 32 pixels to be
displayed.

The module also queries the edgefollow module for a set of up to eight x/y
coordinate pairs representing pixels identified as corners.  The querying is done on line
480, which is just out of the active video region.  The input num_corners indicates the
number of corners identified that should be displayed.  For each active pixel up to the
number of dots to be displayed, a new x/y coordinate pair is queried from the edgefollow
module by setting the corner number cnum and reading the inputs xpos and ypos.  To
speed up processing during the display phase, a mask is created indicating how many dots
should be displayed.   For each pixel displayed in the next frame, the x and y coordinates
are compared with each of the coordinates of the polled corners.  If there is a match, a red
overlay is displayed at the appropriate point.

Threshold select - Radu

Since the threshold of distinguishing black from white may vary with lighting
conditions, this module was developed as a convenient way to select the threshold level.
Its input is from two buttons.  This module runs with a large 22 bit clock divider.  Once,
on every cycle of the larger clock, it checks to see if either of the buttons is pressed.  One
button causes the threshold value to increase and the other causes it to decrease.  When
both are pressed at the same time, the threshold resets to 95.  The threshold value is
outputted to the composite_in module, which uses it to discriminate between black and
white, and to the hex_display module, which outputs the value of the threshold on two
seven-segment displays.

Table 3 - VGA Horizontal Timing (640x480 60Hz)

Scanline time 31.77 μs
Sync pulse length 3.77 μs
Back porch 1.89 μs
Active video time 25.17 μs
Front porch 0.94 μs
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Hex display - Radu

The purpose of this module is to provide a means of easily viewing some detail
about the status of the system.  This is a useful module to have around for debugging
purposes.  It controls the four seven-segment LED displays on the Xilinx board.  A four
bit input to any of these displays is shown in hexadecimal.  Currently, the first two
displays report the value of the threshold, and another one reports the n_corners output of
the edgefollow module.

Edge follow – Radu

The edge following module represents the core of the system, and at the same
time the most uncertain component in terms of feasibility.  A number of algorithm ideas
were developed, yet none of the implementations proved satisfactory results on real-world
data. The complexity of the algorithm could not be increased without producing very
slow or very large logic.

In the current implementation, the module performs simple a simple algorithm to
determine slope changes of black lines in the input.  A simple case is assumed where the
only object in the input is a white piece of paper with a black border.  For each line of the
input, the module computes the centers of all black regions.  From line to line, the change
in the x coordinate of the center of each black region is stored as a slope.  Whenever a
new edge is encountered, or when the slope changes by more than a certain threshold, the
coordinates of the point are stored as a new corner.

Other implementations included recording extremes coordinates for the centers of
the borders, and keeping track of positive an negative sloping lines separately and
recording  staring and ending coordinates.  None of these proved to be more accurate
using live video data.

The module reads data stored in RAM in 16-pixel blocks during its alloted
memory access time.   It also provides an interface for querying the location of the
corners, through the input c_num which selects the corner queried, and the outputs x_pos
and y_pos which are assigned to the appropriate x/y coordinate pair.

This module would have benefited from the implementation of a microprocessor
core in order to allow the complex computations required for properly filtering and
classifying the slope data.   Whereas the edge detection needs to run at high speed and is
suited for being implemented in digital logic, processing of line and frame information
requires more complex algorithms than can be efficiently encoded directly in logic.

Motor control - Radu

This module produces a pair of PWM signals to be fed to a servo pair which are
meant to control the direction of a laser pointer.   The signals produced are standard RC
servo controller signals, with a duty period of 1-2ms and a cycle period of 10ms.
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Distribution of Work
Despite the modularity of this system, Ali and Radu worked together a lot.  Ali

focused primarily on composite_in, memory manager,  vga_out, and external
components, getting the timings and signals correct to access SRAM and display video.
Radu spent some time on these parts as well, but also worked on threshold_select,
hex_display, and edgefollow. 

Testing and Debugging

We attempted to build our project in a way that would make testing easier.  For
instance, we used the threshold module to see the effect of modifying different variables.
The hexadecimal display module gave us the ability to track the values of our counters
and check for various events.  When Ali was having trouble getting the composite_in to
work with the video camera sync signals, he narrowed down the problem to corrupted
sync  signals  from  the  external  components  by  using  the  syncgen.v  module  which
simulates proper hsync and vsync signals  from the camera.  He used these simulated
syncs with a generated image and saw that the timings and writes to the SRAM were
correct.  As it turns out, a frequent problem was the AD775 burning out despite being
wired  according  to  specifications.   A resistor  was  added  to  current  limit  the  supply
voltage.   Radu  meticulously  rewired  the  circuit  when  some  elements  of  noise  were
noticed.  Also, the generated box image serves as a simplified situation in which the edge
following  could  take  place,  but  the  overall  scheme  of  debugging  was  considering
assumptions  we  were  making  in  each  module  and  figuring  out  ways  to  test  each
assumption to see if it was in fact true.  Once the vga_out module was able to properly
read  SRAM  data,  we  were  able  to  output  conditionals  such  as  (h_count  >  320)  or
whatever else we needed.  Nonetheless, the problems we encountered turned out to take a
very long time to debug, and as a result we did not make as much progress as we would
have liked.  Also, a consequence of modifying each others code was that we would often
spend a lot of time trying to fix a problem that the other had just fixed.

Conclusions 
The project unfolded more like a scientific experiment than we would have

expected.  The nature of  the incoming video was hard to predict, and thus the complexity
of the edge detection algorithm needed was unknown.  The system had to be over-design
with respect to the number of modules which could access the memory, as we envisioned
multiple modules being needed for pre-processing of the data, as well as performing
different methods of corner/edge detection simultaneously.  This complicated the memory
interface for all of the parts, and int the end only three modules ended up being interfaced
with the memory.  For example, a blurring module was not needed since the black/white
image obtained with the camera slightly out of focus resulted in an excellent noise-free
image.
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The initial assumption the required edge/corner detection algorithms could be
simply implemented just as digital logic proved to be false.  Even with the 200,000 gate-
equivalents available on the Spartan-3 board, the logic resulting even for the simple
algorithm presented was large (over 120,000 gates).  A simple microprocessor core could
make use of edge coordinates and widths calculated in logic to perform more complex
calculation and determine corner coordinates much more accurately, allow for simpler
and more flexible reprogramming, all with a smaller logic footprint.
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Appendix

Memmanager.v
module memmanager(we, oe, sram_address, sram_data,
addressvga,datavg22a,datacomposite,addresscomposite,mem_clk,
                     addressedge,dataedge,oevga,wecomposite,oeedge,
cebar, ubbar, lbbar);

    output we;
    output oe;
    output [17:0] sram_address;   
    inout [15:0] sram_data;
 

    input [17:0] addressvga;
    input [17:0] addresscomposite;   //  for vga data connect to
sram_data
    input [17:0] addressedge;

    input  [15:0] datacomposite;
    output [15:0] datavga;
    output [15:0] dataedge;

    output lbbar, ubbar, cebar;

    assign cebar = 0;
    assign lbbar = 0;
    assign ubbar = 0;
     
    input [6:0] mem_clk;
    
    wire  [3:0] pixelcount;
    assign pixelcount = mem_clk[6:3];

    // for edge data connect to sram_data

    input wecomposite;
    input oevga;
    input oeedge;

    //THIS BLOCK USES PIXELCOUNT TO PARTITION ACCESS TO SRAM BETWEEN 
    //DIFFERENT BLOCKS.
    //THIS FILE IS CURRENTLY SET UP FOR TWO BLOCKS WHICH WILL READ FROM 
    //SRAM AND ONE BLOCK WHICH WILL WRITE TO SRAM.

    wire vga_time, composite_time, edge_time;

    assign vga_time = (pixelcount == 0);
    assign composite_time = (pixelcount == 15);
    assign edge_time = (~vga_time && ~composite_time);
     

    assign we = ~(composite_time ? wecomposite : 0);
    assign oe = ~(vga_time ? oevga : edge_time ? oeedge : 0);
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    assign sram_address = vga_time ? addressvga : composite_time ?
addresscomposite : addressedge;

    assign sram_data = composite_time ? datacomposite : 16'hz;

    assign  datavga  = vga_time  ? sram_data : 0;
    assign  dataedge = edge_time ? sram_data : 0; 
   

endmodule

Composite_in.v
module composite_in(
    clk,
    mem_clk,
    sram_we,sram_data,sram_address, h_sync, v_sync, toggle, data_in,
threshold, adclk);

    input clk;
    input h_sync;
    input v_sync;
    input toggle;
    input  [7:0] data_in;
    input  [7:0] threshold;
    output [6:0] mem_clk;
    output sram_we;
    output [15:0] sram_data;
    output [17:0] sram_address; 
    output adclk;

wire data;
reg vs;
reg hs;
wire startframe;
wire startline;
reg video;
reg line;
reg [10:0] hcount;
reg [10:0] vcount;
wire [9:0] xcor;
wire [9:0] ycor;
wire en;
reg [2:0] pixclk;
reg oddeven;
reg [15:0] vid_buffer;
reg [15:0] vid_bufferold;
reg [17:0] vid_sram_address;

assign data = (data_in > threshold);
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reg [6:0] mem_clk;

wire [3:0] pixel_count;
wire [2:0] div;
assign pixel_count = mem_clk[6:3];
assign div = mem_clk[2:0];

//*****************************************
//This section generates a box image to store to sram

reg  border,linea,lineb,linec,lined,diagonal;
wire [8:0] px;
wire [7:0] py;

wire [8:0] X1, X2, X3, X4;
wire [7:0] Y1, Y2, Y3, Y4;
reg [7:0] ycount;
reg [4:0] xcount;
wire [8:0] ma;
wire [16:0] mb;

assign py = ycount;
assign px = {xcount,pixel_count};

assign X1 = 18;
assign X2 = 300;
assign X3 = 290;
assign X4 = 8;
assign Y1 = 4;
assign Y2 = 25;    
assign Y3 = 221;
assign Y4 = 200;
assign ma = 305;
assign mb = 209;
   
always @(posedge clk) begin
  linea  <= ((Y1-2 <= py)&(py <= Y2-2)&(X1-2 <= px)&(px <= X2+2)) ?
((py-Y1)/2 ==(ma*(px-X1)/8192)) : 0;
  lineb  <= ((Y2-2 <= py)&(py <= Y3-2)&(X2+2 >= px)&(px >= X3-2)) ?
((X2-px)/2 ==(mb*(py-Y2)/8192)) : 0;
  linec  <= ((Y3+2 >= py)&(py >= Y4+2)&(X3+2 >= px)&(px >= X4-2)) ?
((Y3-py)/2 ==(ma*(X3-px)/8192)) : 0;
  lined  <= ((Y4+2 >= py)&(py >= Y1+2)&(X4-2 <= px)&(px <= X1+2)) ?
((px-X4)/2 ==(mb*(Y4-py)/8192)) : 0;
  border <= (linea || lineb || linec || lined);

  diagonal <= ((px == py) || (px == 320 - py));  //This is another
possible test output.
end

 
//*****************************************

reg sram_we;
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reg [17:0] sram_address;
reg [15:0] sram_data;

reg [15:0] recent;

assign buffer_full = (pixel_count == 15);

always @(posedge clk) mem_clk <= mem_clk + 1;

always @(posedge clk)  begin
     if (xcount == 20)

   ycount <= (ycount == 240) ? 0 : ycount + 1;

if (div == 2)
   if (toggle) recent[pixel_count] <= border;

else if (buffer_full) recent <= vid_bufferold;

if (buffer_full) 
case (div)  

       2:  begin
      sram_address <=  toggle ? (py*20 + px[8:4]) :

vid_sram_address;
              xcount <= (xcount == 20) ? 0 : xcount + 1;

 end
       4: sram_data <= recent;
       5: if (buffer_full)

       sram_we <= 1;
       7: if (buffer_full)

       sram_we <= 0;
       
     endcase  

end

always @(posedge clk) begin
   vs <= v_sync;
   hs <= h_sync;

    if (video & line & en) begin
if (xcor[3:0] == 'b1111) begin

vid_bufferold[15:0] <= {data, vid_buffer[14:0]};
if ((ycor[9:0] == 0) & (xcor[9:4]== 0))

vid_sram_address <= 0;

else
vid_sram_address <= vid_sram_address + 1;

          end
else 

vid_buffer[xcor[3:0]] <= data;
    end
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    pixclk <= startline ? 0 : pixclk + 1;

    hcount <= startline  ? 0 : (en ? hcount + 1 : hcount ) ;
    vcount <= startframe ? 0 : (startline ? vcount + 1 : vcount);

    video <= (vcount > 14) & (vcount < 255);
    line  <= (hcount > 30) & (hcount < 351);
end

assign en  = (pixclk == 0);

assign startframe = ( v_sync & ~vs);  // positive edge of vsync
assign startline  = (h_sync &  ~hs);  // positive edge of hsync

assign xcor = line ? (hcount - 31) : 0;
assign ycor = video ? (vcount - 15) : 0;

assign adclk = pixclk[2];

endmodule

Vga_out.v

module vga_out(clk, mem_clk,
               switches,

hsync,vsync,rgb,
sram_oe,sram_data,sram_address,
cnum, num_corners, xpos, ypos);

  input clk;     // 50Mhz

  input [7:0] switches;
 
  output hsync;
  output vsync;
  output [2:0] rgb;

  output [3:0] cnum;

  reg [3:0] cnum;

  input  [3:0] num_corners;
  
  input  [8:0] xpos;
  input  [8:0] ypos;

  input  [6:0] mem_clk;

  output sram_oe;
  input  [15:0] sram_data;
  output [17:0] sram_address;  //0-14

  reg [17:0] sram_address;
  reg        sram_oe;
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  reg [31:0] sram_pixels;

  //****************************************************************
  //****************************************************************
  //***
  //***  Sync and Blanking Signals
  //***
  //****************************************************************
  //****************************************************************

  reg hsync, vsync, hblank, vblank;
  
  reg [9:0] hcount;  // pixel number on current line
  reg [9:0] vcount;  // line number

  //****************************************************************
  //****************************************************************
  //***
  //***  Pixel logic
  //***
  //****************************************************************
  //****************************************************************

  wire en;
  wire [3:0] pixel_count;
  wire  read_cycle;
 
  assign en = mem_clk[0];
  assign pixel_count = mem_clk[6:3];
  assign read_cycle  = (pixel_count == 0);

  wire hblankon,hblankoff,hsyncoff,hreset;

  assign hblankon = en & (hcount == 783);
  assign hblankoff = en & (hcount == 142);
  assign hsyncoff = en & (hcount == 96);
  assign hreset = (mem_clk == 97) & (hcount > 783 ); 

  // vertical: 528 lines = 16.77us
  // display 480 lines

  wire vsyncon,vsyncoff,vreset,vblankon;

  assign vblankon = hreset & (vcount == 479);    
  assign vsyncon = hreset & (vcount == 492);
  assign vsyncoff = hreset & (vcount == 494);
  assign vreset = hreset & (vcount == 527);

  wire [2:0] div;
  assign div = mem_clk[2:0];

  wire [9:0] hpos;
  assign hpos = hcount - 143;

21



  reg nextpixel;
  
  always @(posedge clk) begin 
    hcount <= hreset ? 0 : (en? hcount + 1 : hcount);

    hblank <= hblankoff ? 0 : hblankon?  1  : hblank;
    hsync <=  hreset    ? 0 : hsyncoff?  1  : hsync;   // hsync is
active low

    vcount <= hreset  ? (vreset ? 0 : vcount + 1) : vcount;
    vblank <= vreset  ? 0 : vblankon ? 1 : vblank;
    vsync <=  vsyncon ? 0 : vsyncoff ? 1 : vsync;   // vsync is active
low  

    if (read_cycle) 
  case(div)
   1:begin
       sram_address <= vcount[9:1]*20 + hcount[9:5] - 4;

  sram_oe <= 1; 
end

   2:begin
       nextpixel         <= sram_data[0];
       sram_pixels[15:0] <= sram_data[15:0];
       sram_address <= sram_address + 1;

end
        3:begin  

       sram_pixels[31:16] <= sram_data[15:0]; 
  sram_oe      <= 0;

          end    
       endcase

      if (en & ~hpos[0])
       nextpixel <= sram_pixels[hpos[5:1]];
  end

  reg dot;
 
  reg [8:0] dotx[7:0];
  reg [8:0] doty[7:0];
  reg [15:0] dotmask;
 
  wire [8:0] x;
  wire [8:0] y;
  
  assign x = hpos[9:1];
  assign y = vcount[9:1];

  always @(posedge clk) begin
     if (en & ~hpos[0] )

dot <= ( dotmask[0] & ((x == dotx[0]) & (y == doty[0]))) |
       ( dotmask[1] & ((x == dotx[1]) & (y == doty[1]))) |

  ( dotmask[2] & ((x == dotx[2]) & (y == doty[2]))) |
  ( dotmask[3] & ((x == dotx[3]) & (y == doty[3]))) |
  ( dotmask[4] & ((x == dotx[4]) & (y == doty[4]))) |
  ( dotmask[5] & ((x == dotx[5]) & (y == doty[5]))) |
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  ( dotmask[6] & ((x == dotx[6]) & (y == doty[6]))) |
  ( dotmask[7] & ((x == dotx[7]) & (y == doty[7]))) ;
  

  end

  reg [2:0]  rgb;
  reg [3:0]  num_dots;

  
   always @(posedge clk) begin
    if (vcount == 480) begin      
      if (hcount == 0) begin
         num_dots <= 0;

   dotmask <= 0;
      end
      else 
      if ( (num_corners != 0 ) && (num_dots < {0,num_corners} + 1))

 begin
   cnum           <= num_dots;
   dotx[num_dots] <= xpos;
   doty[num_dots] <= ypos;
   dotmask <= dotmask * 2 + 1;

      end

      num_dots <= num_dots + 1;
     end
  end

  
  
  always @(posedge clk) if (en) begin
    if (hblank || vblank )
      rgb <= 0;
    else if (switches[0])   // 1 pixel outline of visible area (white)
      rgb <= (hpos==0 | hpos==639 | vcount==0 | vcount==479) ? 7 : 0;
    else if (switches[1])   // color bars
      rgb <= hpos[8:6];
    else if (switches[2])   // checker board
      rgb <= (hpos[2] ==  vcount[2]) ? 7 : 0;
    else if (switches[3])   //from sram

 rgb <= { nextpixel, 1'b0, dot};
    else                  // default: black
      rgb <= 0;
  end

endmodule

Threshold_select.v

module threshold_select(threshold,clk,buttonup,buttondown,tlow,thigh);
    output [7:0] threshold;
    input clk;
    input buttonup;
    input buttondown;
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    output [3:0] tlow;
    output [3:0] thigh;

 reg [21:0] big_clock;
 reg [7:0]  threshold;

 assign tlow = threshold[3:0];
 assign thigh = threshold[7:4];

 always @(posedge clk) begin
   big_clock <= big_clock + 1;
   if (big_clock == 0) begin
   if (buttonup & buttondown) threshold <= 95;
   else begin

   if (buttonup) threshold <= threshold + 1;
   else if (buttondown) threshold <= threshold - 1;

     end
   end
 
 end

 endmodule

Hex_display.v

module hex_display(clk,d0,d1,d2,d3,seg,an0,an1,an2,an3);
  input clk;
  input [3:0]d0;
  input [3:0]d1;
  input [3:0]d2;
  input [3:0]d3;

  output [7:0] seg;
  output an0,an1,an2,an3; 
  
  reg [3:0]d;
  
  reg an0,an1,an2,an3;  
  reg [7:0] seg;
  
  reg [1:0] div;
  
  reg [15:0] count;

  always @(posedge clk) begin
     count <= count+1;
     if (count == 0) 
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   div <= div+1;
  end

  always @(posedge clk) begin
    an0 <= (div != 'b00);
    an1 <= (div != 'b01);
    an2 <= (div != 'b10);
    an3 <= (div != 'b11);

    case(div)
         'b00: d <= d0; 
         'b01: d <= d1;

    'b10: d <= d2;
    'b11: d <= d3;

    endcase

    case (d) 
         0 : seg <= 'b00000011; 
         1 : seg <= 'b10011111; 
         2 : seg <= 'b00100101; 
         3 : seg <= 'b00001101; 
         4 : seg <= 'b10011001; 
         5 : seg <= 'b01001001; 
         6 : seg <= 'b01000001; 
         7 : seg <= 'b00011111; 
         8 : seg <= 'b00000001; 
         9 : seg <= 'b00001001; 
        10 : seg <= 'b00010001; 
        11 : seg <= 'b11000001; 
        12 : seg <= 'b01100011; 
        13 : seg <= 'b10000101; 
        14 : seg <= 'b01100001; 
        15 : seg <= 'b01110001;
    endcase
  
  end

 endmodule

Edgefollow.v

  module edgefollow(clk, mem_clk, cnum, ypos, xpos, sram_oe, sram_data,
sram_address,n_corners,reset_btn);
  input reset_btn;
  
  input clk;
  input [6:0] mem_clk;

  input  [3:0] cnum;

  output [8:0] xpos;
  output [8:0] ypos;
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  output [3:0] n_corners;

  reg    [3:0] n_corners;

  output sram_oe;
  
  output [17:0] sram_address;
  input [15:0] sram_data;

  reg [17:0] sram_address;
  reg        sram_oe;

  reg [15:0] pixel_data;

  reg [4:0]  block_count;
  reg [3:0]  pixel;
  
  wire [8:0] x;
  assign     x = {block_count, pixel};

  reg [3:0] div;

  wire [2:0] mem_div;
  assign mem_div = mem_clk[2:0];

 
  wire [3:0] pixel_count;
  assign pixel_count = mem_clk[6:3];
  
  reg  [8:0] y;

  reg  lastpixel;

  wire enter_read_state;
  assign enter_read_state = (pixel_count == 1 ) || (pixel_count == 2 ); 

  reg [8:0] last_posedge;      //  last positive edge found on current
line
  reg [8:0] edge_center[7:0];  //  coordinates edge centers  on current
line
  reg [8:0] edge_center_prev[7:0]; // coordinates of edge centers on
previous line
  reg [2:0] num_edges;         //  number of edges found on current line
  reg [2:0] num_edges_prev;    //  previous number of edges

  reg [5:0] slopes[7:0];       //  the slopes of the edges from
previous to current line
  reg [5:0] slopes_prev[7:0];  //  the slopes of the edges onto
previous line
  
  reg [8:0] corner_x[15:0];      // x corner coordinates
  reg [8:0] corner_y[15:0];      // y corner coordinates

  reg [8:0] corner_x_prev[15:0]; // values from previous frame
  reg [8:0] corner_y_prev[15:0]; //
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  reg [3:0] num_corners;        // number of corners thus found  

  reg [5:0] state;
  reg [5:0] proc_state;

  parameter LINE_CHECK_EDGES  = 0;
  parameter LINE_CALC_SLOPES  = 1;
  parameter LINE_CHECK_SLOPES = 2;
  parameter LINE_END          = 3;

  parameter WAIT          = 0;
  parameter READ_BLOCK    = 1;
  parameter PROCESS_BLOCK = 2;
  parameter PROCESS_LINE  = 3;
  parameter PROCESS_FRAME = 4;
  parameter RESET         = 7;

  

  reg [8:0] xpos;
  reg [8:0] ypos;

  always @(posedge clk) begin
     xpos <= corner_x_prev[cnum];

ypos <= corner_y_prev[cnum];
  end
 
  always @(posedge clk) begin 
  if (reset_btn) 
        state <= RESET;
  else       
  case (state)
    WAIT:   if (enter_read_state & (mem_div == 7 ))

      state <= READ_BLOCK;

    READ_BLOCK: begin
                  case (mem_div)
                   4: begin
                       sram_address <= y * 20 + block_count;
                       sram_oe      <= 1;
                      end
                   5: pixel_data    <= sram_data;
                   6: sram_oe       <= 0;
                   7: begin
                       state        <= PROCESS_BLOCK;                   
                       pixel        <= 0;
                      end 
                  endcase
               end

                
    PROCESS_BLOCK: begin  
                 pixel <= pixel + 1;
               
                 case ( {lastpixel,pixel_data[pixel]})
                  'b10:   last_posedge <= x ;
                  'b01:   begin
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                           edge_center[num_edges] <= (last_posedge + x)
/ 2 ;
                           num_edges  <= num_edges + 1;
                          end
                 endcase
                
                 lastpixel <= pixel_data[pixel];

                 if (pixel > 14)
                   if (block_count > 18) begin
                     state <= PROCESS_LINE;
                     proc_state <= LINE_CHECK_EDGES;

 block_count <= 0;
         end

                   else begin 
                     state <= WAIT;
                     block_count <= block_count + 1;
                   end
                   
                end
    PROCESS_LINE: begin 
                   case(proc_state)
                    LINE_CHECK_EDGES:  begin
                          if (num_edges == 0) begin
                             proc_state <= LINE_CHECK_SLOPES;

              div <= 0;
                          end
                          else begin
                            div <= 0;
                            proc_state <= LINE_CALC_SLOPES;
                          end
                        end
                    LINE_CALC_SLOPES:  begin
                        if (num_edges_prev == 0 ) begin         // new
edges <= record corners

                            corner_x[num_corners] <= edge_center[div];
                            corner_y[num_corners] <= y;
                            num_corners <= num_corners + 1;

                            if (div == (num_edges - 1)) 
                              proc_state <= LINE_END;
                            else
                              div <= div + 1;
                         end
                         else begin                           // edges
found previously <= calculate slopes

                            slopes[div] <= (edge_center[div] -
edge_center_prev[div])   ;
                           
                            if (div == num_edges - 1) begin
                              proc_state <= LINE_CHECK_SLOPES;
                              div        <= 0;
                            end
                            else 
                              div <= div + 1;
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                         end
                        end
                    LINE_CHECK_SLOPES: begin
                if (num_edges != 0) begin
                          if (slopes[div] > slopes_prev
[div])         // avoid negative numbers
                            if ( (slopes[div] - slopes_prev[div]) > 4 ) 

   begin
                               corner_x[num_corners] <= edge_center
[div];
                               corner_y[num_corners] <= y;

                num_corners <= num_corners + 1;
                            end
                          else
                            if ( (slopes_prev[div] - slopes[div]) > 4 ) 

   begin
                               corner_x[num_corners] <= edge_center
[div];
                               corner_y[num_corners] <= y;

                num_corners <= num_corners + 1;
                            end
                          end

  edge_center_prev[div] <= edge_center[div];
  slopes_prev[div] <= slopes[div];

                   
                       if (div == num_edges)
                           proc_state <= LINE_END;
                       else
                           div <= div + 1;
                       end
                    LINE_END: begin
                         num_edges <= 0;
                         num_edges_prev <= num_edges;
                         
                         lastpixel <= 1;
                         div       <= 0;
                         if (y > 239) begin
                              state <= PROCESS_FRAME;

              div <= 0;
                         end
                         else begin
                              y <= y + 1;
                              state  <= WAIT;
                         end
                         end  
                      default: proc_state <= LINE_END;
                   endcase

                end
   PROCESS_FRAME: begin
                 div <= div + 1;

  num_edges <= 0;

  n_corners <= num_corners;

29



  corner_x_prev[div] <= corner_x[div];
  corner_y_prev[div] <= corner_y[div];

  if (div == num_corners) begin
                              state <= WAIT;  

      num_corners <= 0;
      lastpixel <= 1;
      y <= 3;
      block_count <= 1;

                          end
                 end 
   RESET: begin
             num_corners <= 0;
             lastpixel <= 1;
             n_corners <= 0;
             block_count <= 1;
             y <= 3;
             state <= WAIT;
          end

   default: state <= WAIT;
               
   endcase
   end

endmodule

Syncgen.v

module syncgen(clk,h,v);
    input clk;
    output h;
    output v;

reg c1[11:0];
reg c2[11:0];
reg c3[19:0];
reg c4[19:0];

always @(posedge clk) begin
if (c1 > 3175) begin

h<=1;
c1<=0;
c2<=0;

end
else if (c2 > 2940) begin

h <= 0;
c2<=0;

end
else if (c3 > 980000) begin

v <= 1;
c3<=0;
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c4<=0;
end
else if (c4 > 970000) begin

v <=0;
c4<=0;

end
else begin
c1 <= c1 + 1;
c2 <= c2 + 1;
c3 <= c3 + 1;
c4 <= c4 + 1;
end

end

endmodule
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Input Wiring Diagram
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Figure 4 - Input Wiring Diagram


