
 1

Multi-timbral Sound Module

6.111 Final Project

Valerie Gordeski
Susan Hwang
Chris Sheehan

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

December 9th, 2004

Abstract

 The multi-timbral sound module is a music synthesizer that is able to generate
three different instrument sounds. A user can choose to play a song from a keyboard
using different voices (just by toggling a switch), to record a song from the keyboard
entry and then to play it back, or to listen to two prerecording songs that use multiple
instruments. Susan Hwang was responsible for the front end: the keyboard entry, the
keyboard write/read to and from the RAM, and for the decoding unit that produces the
appropriate pitch and play signals to the instrument. Chris Sheehan was responsible for
creating the appropriate pitches using the inputs from Susan’s module through
interpolation, and for the integration of the entire overall system. Valerie Gordeski was
responsible for taking the interpolated waveform and for shaping it to sound like the
piano, violin and the flute, and to create a back-end mixer and volume control that would
mix the digital waveforms and output the analog version of the result to the speaker. The
hardest part of the project was the integration of the entire system - when the project
takes up several FPGAs it has to be tested separately in little pieces, and when it is put
together and little things go wrong it is extremely hard to know right away what is not
working.

 2

Table of Contents

1. Introduction... 4
2.Font-End Input Control and Decoder(Susan Hwang) 5

2.1 Decoder .. 6
2.11 Keyinterface.. 6
2.12 Keydecoder .. 7
2.13 Realplay ... 8
2.14. Record ... 9
2.15. Blank ... 10
2.16. Masterunit ... 10
2.17. Frontend .. 12

2.2 Testing and Debugging ... 12
3. Instruments and Interpolation (Chris Sheehan) 13

3.1 Interpolation.. 13
3.2 Instrument Module Implementations.. 15

3.21 Instrument ... 15
3.22 Note Lookup Table ... 16
3.23 Interpolator FSM... 16

3.24 Sample ROM .. 17
3.25 Interpolator Calculator .. 17
3.26 Divider .. 18
3.27 DAC FSM ... 18

3.3 Other Implementations.. 19
3.31 Midi Synth .. 19
3.32 Songs... 19

3.4 Testing and Debugging ... 22
4. Shaping and Mixing of Sounds (by Valerie Gordeski) 23

4.2 ADSR - Attack, Decay, Sustain, Release ... 24
4.21 ADSR Piano.. 25
4.22 ADSR Flute... 26
4.23 ADSR violin.. 27

4.3 The Mixer and the Sound Control .. 28
4.31 The Mixer.. 28
4.31 The Volume Control ... 29

4.4 Testing and Debugging ... 30
5. Conclusion ... 31

 3

Table of Figures
Figure 1: Overall Front-end Diagram .. 5
Figure 2: Keyboard PS/2 Bus Timing Waveforms.. 6
Figure 3: Simulation of Key Interface ... 6
Table 1: Keyboard Data Sequence... 7
Figure 4: Simulation of Keydecoder... 7
Table 2: The key-pitch-note values.. 8
Figure 5: Real play simulation... 8
Figure 6: Record Simulation.. 10
Figure 7: Simulation of Masterunit and memory units.. 11
Table 4: Message Encoding .. 11
Table 5: Pass Message Encoding... 11
Table 6: Instrument Message Encoding... 12
Figure 8 - Graphic of Interpolation... 14
Figure 9 - Overall Block Diagram of Instrument Module .. 15
Figure 10 - Instrument Simulation Graphic .. 16
Figure 11 - Interpolator FSM Simulation Graphic ... 17
Figure 12 - Interpolator Simulation Graphic .. 18
Figure 13 - DAC FSM Simulation Graphic.. 18
Figure 14 - Fur Elise Sheet Music .. 20
Figure 15 - Silent Night Sheet Music ... 21
Fig. 16 The typical envelope shape of a piano (from

http://www.teachnet.ie/amhiggins/lesson6.html#).. 24
Fig. 17 The block diagram for a Piano ADSR.. 25
Figure 18. The state transition diagram for the piano module... 26
Figure 19. ADSR coefficients stored in the ROM... 26
Figure 20. ADSR coefficients for the flute.. 27
Figure 21. The ADSR envelope shape of the violin .. 28
Figure 22. The Volume Control Module. .. 29
Figure 23. The timing diagram for violinADSR module... 30
Figure 24. The timing simulation for the sound module. .. 31

 4

1. Introduction

The purpose of the multi-timbral sound module is to be able to play three different voices
in a variety number of ways. In particular, this project includes a violin, piano and flute.
The project allows for two different modes of direction from the user: real play from the
user on the keyboard and play from a bank of songs. The keyboard real play only allows
for playing from one instrument but the user may choose to play from 3 different
instrument sounds. The songs contain instructions for all 3 instruments and can create a
polyphonic sound. Table 1 is the overall diagram that shows the different modules that
the sound module is composed of.

There are three main components to the creation of the project: the front end control,
pitch modulation, envelope generation with volume control. The first FPGA contains the
overall control of the instruments complete with the keyboard, button and switch
interfacing. The front end module then passes the play and pitch signals to the
interpolator. The interpolator takes these values and samples the instrument wave stored
in the ROM according to the pitch value. This output is then passed on to the envelope
generator which will shape the instrument waveform according to the instrument. This
will be passed to the speaker to be
heard.

Figure 1: Overall Block Diagram

 5

2. Font-End Input Control and Decoder(by Susan Hwang)

The purpose of this front-end module is to allow the user to control how the three
instruments are played and act as a director. The user can choose from two songs, play
from the keyboard, record from the record and playback. The front-end includes
interfacing between external keyboard, switches, and buttons and the instruments. It
allows recording of keyboard presses into a ram, blanking of the RAM, real-time playing
of the keyboard, and playing from stored song ROMs.

Figure 1: Overall Front-end Diagram

The clock comes from the 1.8 mHz crystal clock and the reset, start (which starts the
keyboard interface), start1 (which starts the song play), and blank are button presses.
Songorkey (which selects whether user wants to play from a song or a key), record, songs
and instrument are all switches. Each instrument receives a play (1 bit) and pitch (5 bits)
values from the output of the frontend module. This will control the playing of each of
the instruments.

 6

2.1 Decoder

2.11 Keyinterface
The purpose of the keyboard interface is to change the serial output of the keyboard into
an 8-bit key code signal. The keyboard interface module takes in the keyboard clock,
keyboard data, a reset, start, and outputs the corresponding 8-bit keyboard code and a
ready signal that pulses high when all 8-bits of the keyboard code have been received.

Figure 2: Keyboard PS/2 Bus Timing Waveforms

The keyinterface also has an additional embedded module called the lev2pulse module.
Due to the nature of the kclk signal, the level to pulse module pulses on the negative edge
of the kclk since the data is valid when the kclk is low. Figure 2 shows the keyboard
clock and data outputs and their relation to each other. Therefore, the sample signal of
the lev2pulse module will trigger the keyinterface to extract the data from the kdata
signal. Figure 3 shows the collecting of 8 data bits from the keyboard. Ready is pulsed
when all 8 bits have been collected.

Figure 3: Simulation of Key Interface

The keyboard interface uses a simple two state finite state machine (FSM). It transitions
to S_INITIAL with the reset button press. The S_INITIAL will transition to S_1 if
sample goes high and the extracting of the data has started. Table 1 shows the keyboard
data sequence. By the time it gets to S_1, the first bit has already been ignored. It will
stay in S_1, until it has reached the count of 10. Meanwhile, the bits coming in will be
stored to the corresponding 8-bit memory register. It only stores bit 1-9 into the message

 7

register and ignores the first and last 2 bits. When the count 10 has been reached, S_1
transitions to S_INITIAL to wait for the next sample and outputs the updated message
register to the keydecoder as outmessage and pulses ready.

1 2 3 4 5 6 7 8 9 10 11
start DATA parity Stop

Table 1: Keyboard Data Sequence

2.12 Keydecoder

The keydecoder module takes the key message from the keyinterface and decodes it into
the music format that the other modules can recognize. The keydecoder also takes a 2-bit
instrument signal which determines which instrument the messages are created for.
There are two types of codes that are important to our music player: make code and break
code. Each key has a make code which is usually 8-bits long. This indicates a that a key
has been pressed. The break code ‘F0’ followed by a key’s break code indicated that the
key has been released. Accurately detecting the make and break of a key is important
because it determines the length a note is played.

Figure 4: Simulation of Keydecoder

The module has two essential registers: previous and current. When the outdata signal is
received and when ready is pulsed high, outdata is decoded into pitch values which are
stored in the current register. Then current’s value is latched to previous register. The
decoded messages are outputted in two cases. When the previous value is ‘F0’ in which
case an outmessage of instrument turn off will be sent along with a pulsed ready2 and
when the previous value is not ‘F0,’ an outmessage will be set to the instruction “play
instrument with pitch set on current register” with a pulsed ready2 signal. Figure 4
shows a decoding of the outmessage taken from the output of the keyinterface. Table 2
shows how the key codes maps to the pitch codes and actual note values.

 8

KEY CODE PITCH NOTE
15 0 LOW A
1E 1 A#
1D 2 B
24 3 C
25 4 C#
2D 5 D
2E 6 D#
2C 7 E
35 8 F
3D 9 F#
3C 10 G
3E 11 G#
1A 12 A HIGH
1B 13 A#
22 14 B
21 15 C
2B 16 C#
2A 17 D
34 18 D#
32 19 E
31 20 F
3B 21 F#
3A 22 G
42 23 G#
F0 31 BREAK

Table 2: The key-pitch-note values

2.13 Realplay
The realplay module takes the outmessage from the keydecoder module and parses the
message into simple play and pitch values for the instruments. The first top 2 bits are
taken out first to determine which instrument is playing. After it has determined which
instrument is playing, the appropriate play1, play2, play3 are assigned from the 5th bit of
the outmessage and the corresponding pitches are assigned from the 0-4 bits of
outmessage. Figure shows how the realplayer takes the messages and translates it into
play and pitch values for the instruments.

Figure 5: Real play simulation

 9

2.14. Record

The purpose of the record module is to record the keyboard presses into the record RAM
with proper musical encoding. The record module takes the outmessage of the
keydecoder and stores that into the recordram. In addition to just storing the messages of
the keycoder, it determines the length between each message and stores that as a special
pass message into the RAM. The finished RAM is essentially identical to the form of the
song ROMS complete with instrument instructions and pass length messages.

The record module also included an imbedded recordcounter module. The purpose of the
recordcounter is to count how many “time-units” have passed between each message.
This module takes in a clk, startcounter, stopcounter instructions from the record module
and outputs a count. The record module in itself contains another embedded module
called msdivider. This msdivider divides the 1.8mHz clock into 1/8 of a second.
Therefore each count (bit increment) from the recordcounter means an increase of 1/8 of
a second.

The record module includes a six state FSM. It transitions to S_INITIAL from a reset
button press where the register values are initialized. It will transition out of S_INITIAL
to S_1 when the ready2 signal from keydecoder pulses high, indicating a new message is
ready. S_1 sets data and address of the recordram to the appropriate values while
keeping we low. This is setting up the ram for writing. It transitions to S_2 at the next
clock edge. In S_2, we goes high and stores the data in the ram address location. S_2
also triggers the recordcounter to start counting by asserting startcounter high. Then S_2
transitions to S_3 at the next clock cycle. S_3 is essentially a wait state for the next
message to come. When ready2 pulses high, S_3 can transition to S_4 where the record
module gets ready to store the special pass time message. S_4, the module stops the
counter by asserting the stopcounter message. The RAM data register is set to the count
value and the address is set to the next address value. At the next clock edge, S_4
transitions to S_5 and the pass message is stored into the RAM. At the next clock edge,
S_4 transitions to S_6. S_6 is essentially a buffer state that keeps the data and address
valid to make sure the correct values are stored into the RAM. At the next clock edge,
S_6 transitions back to S_1 to store the next message. Figure 6 shows the recording of
various musicdata inputs from the keydecoder and how the recorder interacts with the
recordram.

 10

Figure 6: Record Simulation

2.15. Blank

The blank module blanks the recordram in case the user wants to reuse the ram to record
something else. The blank module takes an external button press to begin writing the
RAM.

The blank module has 4 states. When the external blank button press is first asserted, the
state is set to 0 and the busy signal immediately goes high, signaling to the top module
that the blanker is now accessing the RAM. S_0 is a buffer state to make sure the data
and address have been steady for awhile. S_1, the value of 0 is written to the RAM, S_2
is another buffer state and in S_3, the address in incremented. This cycle continues until
the address has reached the end of the RAM in which case busy signal goes low.

2.16. Masterunit

The masterunit is in charge of reading from the memory units and decoding the messages
to control the three instruments. The masterunit takes in a clock, reset, start, and songs as
external controls. The start tells the FSM to begin playing a song and the songs signal
which is 2 bits long selects which memory unit to read from. In our implementation,
song0 is the recordRAM, song1 is Fur Elise and song2 is Silent Night.

The masterunit has an embedded counter module that counts for a variable amount of
time and signals to the masterunit when it has done counting with a pulsed change signal.
The purpose of the counter is to tell when the masterunit can read from the next address
in the memory units. This could determine note lengths of pause lengths between notes.

 11

Figure 7: Simulation of Masterunit and memory units

The masterunit has 5 states. It first transitions to S_INITIAL with the reset press which
initializes all the outputs and registers to 0. In S_INITIAL, if an external start button is
pressed, then the masterunit transitions to S_1 to begin reading the song. S_1, the
address for the memory unit is set and S_2 is the buffer state to hold the address steady.
S_3 is when the message from the memory unit is decoded. A case statement is used to
determine which type of message or instrument is being described. Any of ’01,10,11’
indicated that an instrument is being turned on or off so the corresponding play and pitch
values should be correctly set. All of the instrument instructions will automatically
transition back to S_1. A ‘00’ which is a time pass message means that the next 6 bits is
the count value and the counter must be started. Then the masterunit transitions to a
special S_4. In S_4, the masterunit waits for the change signal from count, indicating
that the message in the next address can be read. Figure 7 shows the simulation of
playing from songrom1 which has the stored song Fur Elise.

The following is the message encoding that the masterunit uses to interpret the messages
stored in the memory units. Each message is currently set at 8 bits long. The 2 MSB
encodes the type of instruction, the next 1 bit encodes play(on/off), the next 5 encodes the
pitch. However, a special instruction includes the pass message. The pass message,
instead of having play, pitch information has the time value information in 6 bits
describing how long to wait before reading the next message.

MSB (2) 00 01 10 11
Type Pass Voice 1 Voice 2 Voice 3

Table 4: Message Encoding

There are two types of Messages: Pass message and Instrument message.

00 Time Value (6 bits)

Table 5: Pass Message Encoding

 12

Type/Instrument(2) Note On/OFF(1) Pitch Value (5bits)
01 (voice 1) 1 (on) 0 (lower C)
01 0 (off) Nothing (ignored)

Table 6: Instrument Message Encoding

2.17. Frontend

The front-end module is a collection of the instances of the other modules. It interfaces
between the external controls and the other modules. It also a contains a mux that
controls which module controls the instrument play and pitch outputs. Depending on the
value of songorkey the frontendcontrol selects either play and pitch signal from the
masterunit or the realplay module. It also chooses which module controls the recordram.
Depending on the busy signal from the blank module, rec and songorkey, it chooses
which we, address and data will access the RAM.

2.2 Testing and Debugging

The testing and debugging was difficult for this project due to its complexity and the
abundance of modules. However, there was a systemic method to testing the modules.
After I finished coding each module, I compiled and caught the little syntax errors. I then
simulated to make sure the module was doing what it was suppose to. I tested things very
incrementally. After finishing two modules, I would connect the modules together and
simulate it to make sure they were compatible and the chain would continue. An
example of the steps I took was I first tested whether the keyboard worked. I then
implemented the keyinterface module and checked whether the HEX LEDs would
change on the kit when there is a button press. I then implemented keydecoder and
connected and simulated keyinterface. After I made sure this worked, I added on
realplay, recorder and so on. What was good about this testing is that I could make sure
these parts worked incrementally. Since Chris had an instrument that played a square
wave early on, I could hear when my part was working and when it wasn’t working.

Debugging has very difficult for this project. It was that sometimes when instrument
wasn’t playing, it was hard to tell if it was the frontend or the instrument that had bugs. It
is also hard to interface with other people’s projects. For example, if the instruments are
not configured correcting, the notes will sound off or it will not play altogether. The
debugging also got very complicated when all the modules were put together and there
are a million signal to look at and debug. Something that was also difficult was testing
all three instruments. Since only two instruments fit on one FPGA, we had to put an
instrument with the front end control and bus the input and output signals. Something
very difficult is dealing with the keyboard. The keyboard is old and often the
connections are not so good so sometimes the keyboard will fail and it is hard to
distinguish whether it is a logic failure or hardware failure.

 13

3. Instruments and Interpolation (Chris Sheehan)
The overall project was to create a sound module that can play songs from various inputs
by sounding one or more unique instruments. My role in the project was to create the
actual digital instruments that create the sound. While Susan worked on the front end of
the system and Valerie worked on the backend digital signal processing, I worked on the
“middle.” My goal was to create a set of digital instruments that would take instructions
from Susan’s module and output digital signals to Valerie’s module.

The instruments were to be digital in nature, so they could not use any natural analog
waveforms. An obvious instrument design was to play a series of digital values stored in
a ROM to recreate a waveform. Hooking these signals to a digital-to-analog converter
(DAC) would allow the sound to be played over an analog speaker.

Each instrument had to be able to play many notes so that a variety of songs could be
played. There were a few possibilities of how to create instruments with several pitches.
One would be to have separate ROMs storing sampled waveforms of the specific
instruments playing specific notes. This would unfortunately require a huge number of
rather large ROMs, a memory requirement that is not conducive to FPGAs. Another
possibility would be to have fewer ROMs and achieve different pitches by skipping
through the values in the ROMs. If playing every value at a certain rate sounded an “A,”
then playing every other value at the same rate would sound an “A” an octave higher. To
allow pitches between octaves to be played, the ROMs should be “oversampled,”
meaning that there would be great detail in the ROM values. By choosing every fifth or
every sixth value in the ROM, for example, we could change the pitch slightly.

I determined that both of these proposed possibilities would not work well with the 6.111
lab kits because of the large memory requirement. To solve this problem, I use a
technique called interpolation to shift the pitch of the single sample to produce other
pitches.

3.1 Interpolation
Interpolation shifts the pitch of the sample by accessing the ROM data at different rates.
If the stored sample is a “C,” accessing it at twice the rate would produce a “C” an octave
above, while accessing it at half the rate would produce a “C” an octave below. The
normal “C” would result from reading from the ROM and incrementing the address once
every sample period. The higher “C” would result form reading from the ROM and
incrementing the address twice every sample period. Thus, we can change the pitch by
incrementing the ROM address at different rates, even though the sample period is
constant.

Changing the frequency by integer multiples is very easy, but this produces a range in
notes that is too great for a conventional song. For example, a “D” is two half-steps
above a “C.” A given half-step is one-twelfth of an octave, or 1.059 times faster than the
note below it. A “D” is (1.059)^2 times a “C” in frequency. If the stored sample in
ROM is a “C,” we need to increment the address 1.059^2 times every sample period.

 14

The ROM clearly only allows integer address values, so the challenge is to interpret an
address value like 1.059. One method is to simply ignore the fractional part of the
address value, but this produces a signal that is barely intelligible. Another method, as
seen in the top part of the figure below, is to choose only the nearest ROM address value.
If the “virtual” ROM address is 4.589, the program will choose address 5.

The third method is to use linear interpolation. This method calculates the ROM value by
taking a weighted average of the neighboring ROM values. For example, if the virtual
address is 3.4, the program will take 0.6 of the value at address 3, and 0.4 of the value at
address 4. See the bottom part of the figure for a pictorial representation of this.

If ROM[x] is the value of the ROM at address x, F is the fractional part of the virtual
ROM address, and I is the integer part, the output of interpolation is:

]1[)(][)1(][++−=+ IROMFIROMIFIROM

Figure 8 - Graphic of Interpolation

 15

3.2 Instrument Module Implementations

3.21 Instrument
The instrument module is the core module of my part of the project. It takes a play signal
and note value signal, and produces a digital signal result. The note value can be between
0 and 24, with 0 representing an “A,” 24 representing an “A” two octaves higher, and the
other numbers representing every half-note in between. The module produces an 8-bit
result.

The instrument module is timed by an external source, giving it a start signal. The start
signal tells the instrument to calculate the next value of the digital signal for the
instrument at the desired pitch. When the instrument is simulated at the correct sampling
rate, the stream of instrument results will produce the desired sound when run through the
DAC. The figure below depicts an overall block diagram of the instrument module.

Figure 9 - Overall Block Diagram of Instrument Module

As each start is asserted, the instrument should produce a new result value based on the
values in the sample ROM and the note value. Figure 10 shows the note value changing
in simulation.

 16

Figure 10 - Instrument Simulation Graphic

3.22 Note Lookup Table
The note value is converted to an increment parameter, which represents the value by
which the low “A” frequency must be multiplied to produce the desired pitch. If the note
value is “1,” or a A#, the increment parameter will be 1.059, or one plus the twelfth root
of two. This number is represented as a two’s complement value with an integer and a
fractional part.

The left side of Figure 1 shows how the increment can be represented with an integer and
a fractional part. In my case, the increment has two integer bits and eight fractional bits.

3.23 Interpolator FSM
The instrument’s finite state machine (FSM) controls the reading from the sample ROM
and feed values to the unit that actually interpolates. It keeps track of a virtual address
pointer that represents the address of the sample in ROM that we would like to
interpolate the value of (e.g. ROM[1.34]).

Every time the instrument acts, it increments the virtual address by the increment
parameter. It then retrieves the values in the sample ROM at integer addresses
immediately above and below the virtual address (ROM[1] and ROM[2] in this case). It
passes these values to the interpolator unit, as well as the fractional part of the address
(0.34 here). This number is used to calculated the weighted average of the two ROM
addresses to produce the interpolated value.

 17

Figure 11 - Interpolator FSM Simulation Graphic

In Figure 11, the interpolator FSM is simulated. It fetches two data values from the
ROM, val_a and val_b. Here these are both the same value, 04. Val_a comes from
ROM[0] and val_b comes from ROM[1]. This is consistent with the increment value,
080, which represents one-half. Because the first virtual address will be 0 + ½ = ½, the
first two address should be the one above (1) and the one below (0) the virtual address.
The fractional part of the virtual address (80) is an output that will be past on to the
interpolation calculator.

3.24 Sample ROM
The Sample ROMs themselves (*.mif files) were made by Valerie. There are three
ROMs, one each for the violin, piano, and flute. The ROMs store the values of a
complex waveform for each instrument. The values are 8 bits wide, and the ROM has a
length of 256. Each ROM stores two full periods of the instrument, and when played at
the fundamental sampling rate with no interpolation, the ROMs all store a 440 Hz “A”
note.

3.25 Interpolator Calculator
The interpolator calculator (or just “interpolator”) performs the actual linear
interpolation. It takes the values from the lower and higher ROM address, as well as the
fractional part of the virtual ROM address. Again, if ROM[x] is the value of the ROM at
address x, F is the fractional part of the virtual ROM address, and I is the integer part, the
output of interpolation is:

]1[)(][)1(][++−=+ IROMFIROMIFIROM

The interpolator unit uses two simple multipliers to quickly compute this value.

 18

In the simulation in Figure 12, the fraction is kept constant at one-half (H80). The
interpolator unit is simulated at various low_val and high_val outputs, and it shows that
the result is indeed the arithmetic mean of the two inputs.

Figure 12 - Interpolator Simulation Graphic

3.26 Divider
The divider module is external to the instruments, but it controls the timing of the
instrument system. As I mentioned before, each instrument’s sample ROM contains two
waves in 256 samples. This must be sampled at a rate that creates a 440 Hz “A.”
Because the system. It turns out that we need 558 samples per 1/100 second to create an
“A” from the stored sample. Because we are using a 1.8432 MHz system clock, the
divider unit divides the clock by 33 to create the correct sampling signal.

3.27 DAC FSM
The DAC FSM (digital-to-analog converter finite state machine) effectively synchronizes
the instruments in the system. Each sampling period, it tells every instrument to fetch
new interpolation values. When the signals from each instrument are all ready, the DAC
FSM enables the result of the system to be output to the DAC. This unit deals with the
start and busy signals from each instrument, and waits for each instrument to be ready
with its values before changing the output to the DAC.

Figure 13 - DAC FSM Simulation Graphic

 19

In the simulation in Figure 6 it is clear that the DAC FSM waits for all three instrument
busy signals to go low before continuing to state 0, where it will output the result to the
DAC (bring dabar low).

3.3 Other Implementations
In addition to instrument-related modules, I implemented a few other parts of the project.
One was the top-level module for my FPGA. The other was a couple of song ROMs to
drive part of Susan’s control module.

3.31 Midi Synth
This top level module integrates the instruments, ADSRs (Valerie’s back end modules),
and Valerie’s volume control unit. It includes a divider and DAC FSM to control the
timing and synchronization of instruments.

Originally, we wanted to divide the project onto two FPGAs: one to have all of the
control signals and user inputs, another to house the instruments and back end processing.
Unfortunately, the many ROMs in our project did not allow all three instruments and
ADSRs to be stored on one FPGA. Thus, this top level module included two instruments
and ADSRs internally, and had one instrument and ADSR external.

The module receives control signals from Susan’s controller FPGA and gives play and
pitch signals to the two internal instruments. It also receives the digital signal output
from the external instrument, which is stored on Susan’s FPGA. This instrument’s pitch
and play signals are all controlled within Susan’s FPGA, but the instrument interacts with
the DAC FSM on my ROM through the start, busy, and sample signals.

All of the signals between the FPGAs are bussed through a 50-pin cable connecting the
boards of each unit.

3.32 Songs
One of the features of the sound module is to play pre-stored songs from internal ROMs.
Although it was Susan’s part of the project to read through the ROMs and interpret the
instructions, I programmed the songs into the *.mif format.

The two songs are Fur Elise and Silent Night (‘tis the season!). I found sheet music for
the songs online, at http://www.8notes.com.

For Fur Elise (see Figure 14), I programmed nine measures of the song into a ROM. The
treble clef was programmed as the violin, and the bass clef was the piano. For Silent
Night (see Figure 15), I programmed the entire twelve-measure song. The violin part was
programmed as the violin, and the piano part was split into a two-part harmony between
the piano and the flute. I had to transpose some of the notes differently then they were
written because of the limited number of notes on the sound module. There were also too
many notes on the sheet music to program using only three separate instruments.

http://www.8notes.com/

 20

Figure 14 - Fur Elise Sheet Music

 21

Figure 15 - Silent Night Sheet Music

 22

In the interest of time, I first converted the sheet music into human-readable pseudo-code.
The first measure of Fur Elise, for example, looked like:

---1
p1
1o19
p1
off1
1o18
p1
off1

The ---1 is simply a comment indicating the beginning of measure 1. This was useful for
finding mistakes in the code. The first instruction “p1” is a pause for 1 period. “1o19”
means turn instrument 1 (the violin) on and play pitch 19. Pitch 19 corresponds to a high
E, as one can see from the sheet music. Then there is another pause, and “off1” tells the
sound module to turn off the instrument. The entire piece continues like this until the
end, and other instruments can be added with messages like “2o19” or “off2.”

The next step was to convert the songs to a *.mif file that could be read in Verilog to
initialize a ROM with the proper songs. All of the song ROM files were 256 addresses in
length (Silent Night barely fit). To convert this pseudo-code into actual instructions, I
wrote a Python script to process the text files. See the Appendix for the code. After run
through the script, the first measure of Fur Elise looks like:

 0 : 1;
 1 : 115;
 2 : 1;
 3 : 64;
 4 : 114;
 5 : 1;
 6 : 64;

These instructions can be read by Susan’s control unit to drive the instruments and
produce the songs. Because the keyboard does not allow multiple instruments to play at
the same time, the song ROMs enable creation of polyphonic sounds.

3.4 Testing and Debugging
Our group was careful to design the project so that it could be implemented in modular,
incremental stages. When each module or each incremental implementation was
finished, we would test thoroughly.

I found that testing by simulation was often not enough to ensure successful functionality.
At different design stages, I would program the FPGA with a module that would allow
me to test my code in hardware. This reduced the number of surprises later when I
assembled the project and programmed the FPGA.

 23

I also designed as many modules as possible so they could be extended, much as Java has
classes and inheritance. For example, instead of creating three separate piano, violin, and
flute modules, I designed a single, generic “instrument” module. I tested this module
thoroughly with a simple sine wave ROM before adding in the more complicated sample
ROMs.

My technique for debugging the overall system and assembling the modules was to
incrementally add functionality and test the system. I would gradually convert dummy
modules into real functional ones and catch errors along the way. If a module did not
work correctly, I would create a new top level module whose only purpose was to test
this module. I actually had three or four top level modules that I could separately
program to test individual features.

Once in hardware, I would use the LEDs liberally to indicate correct inputs and outputs.
I would also be extra careful when wiring to not introduce time-consuming stupid
mistakes.

Debugging our project was challenging because many of the aspects of the system could
not be easily tested in software simulation. The sounds of the instruments consisted of
hundreds of digital values being output from the DAC at a very fast rate. MAX+Plus II
could not simulate the actual output waveform. Tweaking the parameters of the
instruments and the ADSRs required often recompilation and reprogramming, which took
a lot of time.

4. Shaping and Mixing of Sounds (by Valerie Gordeski)

4.1 Different Harmonics

There is an infinite complexity to the way different instrument produce sounds. Physics
have long studied why a Stradivarius violin sounds like it does - and tried to reproduce
the exact warm and richness of sound on the violin copies. Every note that is played by
any instrument has a certain quality depending not only on its fundamental frequency
(440 Hz of an A for example), but also on the combinations of the different harmonics
that it has. A harmonic is a higher frequency wave that is a multiple integer amount
times the fundamental frequency of the pitch (for example, 440*2 is 880, therefore 880
Hz is a harmonic of A). All high quality instruments have multitude of higher harmonics
that do not only differ in frequency, but also in their phase from the fundamental. By
combining the fundamental frequency and its harmonics, it is possible to obtain a sound
that sounds somewhat like an instrument you are looking for.

To figure out the harmonic content for the three instruments that our team has chosen to
replicate - the violin, the piano, and the flute - I have spent a lot of time on the internet
trying to find papers and sites relating to this subject. I was able to find the relation
between the fundamental frequency and the 5 harmonics for a piano, including the phase
difference between them. However, for the flute and the violin I was only able to find the

 24

coefficients of their harmonic, therefore when I created the waveforms they did not have
any phase information in them. These waveforms are stored in a ROM, with two periods
and 256 coefficients (128 coefficients per cycle. Please refer to the memory initialization
files given in the Appendix C for the exact values of the coefficients.

4.2 ADSR - Attack, Decay, Sustain, Release

Fig. 16 The typical envelope shape of a piano (from

http://www.teachnet.ie/amhiggins/lesson6.html#)

The most important characteristic and distinguishes the hammer-striking sound of a piano
and a warm blowing of a flute is the shape of the note envelope. Aside from vibrating at
a certain frequency, the amplitude of the note changes over time to give it the sound we
are used to hearing. The manner in which every envelope is described is called ADSR -
or Advance, Decay, Sustain, and Release. These terms describe very well the basic shape
of a piano envelope (see Fig. 16)

The piano has a really sharp ‘attack’ stage, with the peak value corresponding to the
impact of a little hammer in the piano striking the string. After the loud initial vibration,
the string quickly decays (therefore, the decay stage) to a fairly level value, after which
the sound stays somewhat level (hence the name ‘sustain’). During the release part, the
sound quickly decays to zero. The flute, being a wind instrument without striking or
plucking, has a more rounded envelope shape: it has a gradual increase until a certain
peak value, and after that a decrease to zero, without a sharp attack/decay boundary. If
the flute sound is sustained, the sound oscillates in volume and its envelope looks like a
sinusoid. By researching different instruments, and figuring out how their envelopes
differ, our group came up with three instruments that we can shape: the piano, the violin
and the flute. These instruments have enough differences in their envelopes that even
with the imperfect lab tools the listener will be able to distinguish between different
instrument sounds.

 25

4.21 ADSR Piano

The first module that I have created is the ADSRpiano module. This serves as a
template for all the other instruments, although each instrument differs from the next
because of the different envelopes. With the current encoding scheme, the ADSR is only
given the information of when to start and to stop a signal, a clock, a reset button, an
enable signal (that serves as a counter) and a waveform. It then modifies the waveform
to produce a sound wave with amplitude emulating an actual piano sound (please refer to
Fig.17).

Fig. 17 The block diagram for a Piano ADSR

The way this modification is achieved is through a larger FSM, that controls a multiplier
and a ROM with all the ADSR coefficients. The coefficients were first created in
Matlab, and then converted into a .mif file. There are three pointers that keep track of the
ROM address - atkptr (attack pointer), decayptr (decay pointer) and the susptr (sustain
pointer). Originally, the ADSR was configured for a dynamic envelope shaping - given
the shape of the note, it would have calculated the duration of the attack, decay, and
sustain periods, and if the note was shorter than expected, it would have jumped to the
respective pointers. However, our simple encoding scheme only allowed to receive a
start and an endtime. Therefore, the piano stayed in the sustained region by moving the
susptr backwards until the ‘endtime’ signal was given.

The FSM that controls the ADSR has four states: attack, decay, sustain, and idle (please
see Figure 18 for the state transition diagram). With a reset signal, the FSM enters the

 26

idle state. The counter is set to zero, and the program is waiting for a start signal. With
the start signal, the FSM moves into an ‘attack’ phase, by setting the rom address to be
the atkptr. After that, the counter_temp counts every 109 enables and increments the
pointer when it is done, while counter counts to 2618 to know when to reset the count to
zero and to move to the next state. In all states, if ‘endtime’ signal is pressed, the FSM
enters the idle state, and returns addressrom (pointer that keeps track of the ROM
address) to 0 and all the pointers to their appropriate values.

Figure 18. The state transition diagram for the piano module.

State Idle
akptr = changing
decayptr = 24
susptr = 32
busy = 0

State Attack State Decay

akptr = changing
decayptr = 24
susptr = 32
busy = 1

counter =
akptr = 0
decayptr = changing
susptr = 32
busy = 1

State Sustain
akptr = 0
decayptr = 24
susptr = changing
busy = 1

start

endtime

counter =

8722618

Figure 19. ADSR coefficients stored in the ROM
The shape of the e re 19. As stated

.22 ADSR Flute

nlike the piano, the flute has a very slow attack, and a very gradual decay. It doesn’t
d

nvelope that is stored in the ROM is illustrated in Figu
previously, the release part of the waveform is missing because the instrument never
knows when to stop until it actually receives the stop signal. Therefore, it just keeps
looping in the sustain region in order to keep the sound going.

4

U
really have a sustain mode - when the flute is sustained, you hear a sinusoid increase an
decrease in aplitude, creating a wavering sound. Figure 20 illustrates the shape of the
flute envelope.

 27

Figure 20. ADSR coefficients for the flute

The block diagram and the state transition diagram of the flute is very similar to the block
diagram of the ADSRpiano module. It takes in the same inputs: the clock, the reset, the
start, the end, the product of the interpolator, and produces the busy signal (for
debugging) and an 8-bit result. Inside you will find a similar envelope ROM that stores
the coefficients, and the multiplier. The multiplier takes in the coefficients from the
ROM via the addressptr, and multiplies them by the waveform supplied by the
interpolator.

Since there is no sustain, the ADSR flute has only three states: an attack state, a decay
state, and an idle state. At any time it can leave those states if an end signal has been
received - it then returns all the points to their default values and waits for another start
signal. If, however, the end signal is not reached even after all the envelope ROM
coefficients have been used, the decayptr will keep looping around in the high symmetric
part of the coefficients (approximately from 20 to 109), to create a sinusoid-like wavering
sound one might hear when an actual flute is sustained.

4.23 ADSR violin

The violin sounds different from both the flute and the piano. The key difference
between these instrument is the way they sustain their notes : in the piano, after the
hammer strikes the string the sound vibrations die away, therefore there is a gradual
decay in the envelope. With the flute, there is the sinusoid fluttering that was described
in the above section. With the violin, for as long as the violinist holds the bow to the
string, the violin will play without any change in volume (unless of course the violinist
wants it to change the volume). Therefore, after the sharp attack phase, in the envelope
of the violin there is a long sustain period. I thought that the best way to represent this is
just to keep the coefficients in the ADSR ROM constant.

 28

Figure 21. The ADSR envelope shape of the violin

The block diagram and the state transition diagram is again very similar to the piano
(please refer to Figure 17). The inputs are the same, and the ROM is the same length.
Perhaps a way to optimizer the storage would be just to have one address with the
constant coefficient through which I would loop, but I kept all the ROMs having the same
format. There are three states in this FSM: the attack, sustain, and idle. The default state
is the idle state: this is where the module waits for the input. As soon as it receives the
start signal, it goes to the attack phase, and begins its multiplication. As before,
counter_temp and counter registers keep track of when to increment the address pointer
and when to change state, respectively. These registers are incremented at every ‘enable’
signal.

4.3 The Mixer and the Sound Control

After the outputs come out of the ADSR, it is necessary to add them appropriately.
Originally, the waveform that went into ADSR was all positive, and so the multiplication
done in the ADSR was unsigned. With addition of thee instruments at the same time, a
different strategy has to be used.

4.31 The Mixer

Since all the coefficients for the actual instrument waveforms with all of their harmonics
range from 0-255 (all positive), they have to be converted to the range from -128 to 128;
and be put into the 2’s complement format. Then, the type of multiplication in the ADSR
modules was changed to signed multiplication. Now, when the digital waveform comes
out from the ADSR it is centered appropriately around 0. The waveforms can then be

 29

added through a simple addition; or they can be passed through the sound controller first
and then be added.
The code for this very simple mixer resides in the top level module midi_synth.v, found
with Chris Sheehan’s code.

4.31 The Volume Control

The volume control module takes in clock, reset, volup, voldown, and an input from the
ADSR. It produces a 12 bit output, which is a result of the appropriate scaling of the
sound.

The block diagram for the sound control can be found below. In order to multiply the
sound by a certain fraction, you need to first mutiply it and then to divide it. This module
doesn’t have an FSM, it uses a mix of blocking and nonblocking assignments to produce
the appropriate output. The counter in this module keeps track of whether we are
increasing or decreasing in volume. The default value for the counter is 2 - this means
that the sound is in the ‘normal’ state. There are two volume down settings - when the
user presses the voldown button once, the sound goes down, and then down more. After
that, the number of presses doesn’t change, and the counter remains at 0. Now if the user
presses the volume up button, the counter will increment, and the sound will increase
accordingly. This simple scheme for the sound control has been replicated for all thee
instruments.

Figure 22. The Volume Control Module.

When this module was integrated with the ADSRs, there was also a volume switch
implemented. With the volume switch on, the FPGA sends the outputs through the
volume control first, and then reads them out and mixes them. With the volume switch
off, it takes the outputs directly from the ADSR, and then mixes them.

 30

4.4 Testing and Debugging

Majority of my testing and debugging happened through simulations. In order to

see if the ADSR was working properly and whether the states were changing the way I
wanted them to, I changed the counter and counter_temp values to something much
smaller, where I could see over several clock cycles that the address pointer was
incrementing properly. A sample time diagram from the violinADSR is shown below in
Figure 23. In this diagram, you can see the address pointers incrementing when they are
supposed to, and the output incrementing at first during the attack phase (note that the
attack pointer is changing value at this time) and the sustain pointer changing during the
sustain state. You can also see the result incrementing in during the attack phase, and
then staying constant through the sustain part of the violin. When I knew that all of my
modules behaved in a logical fashion, we have tried to integrate them all. Much to my
surprise, all of the ADSRs worked as expected on the first try.

Figure 23. The timing diagram for violinADSR module

The second thing I had to debug was the volume control module. To do that, I first tested
the sound module in simulation (see below). As you can see, the output changes
appropriately with each volume up and volume down button press. On reset, the state
counter switches to 2, which is the default value. With volumeup and volumedown
presses, the output becomes scaled accordingly.

The biggest issue I had with the volume control was during integration. At first, I could
not hear any changes in volume. Because of the limitation of the 8-bit DAC, and the
truncation of the output that had to happen, the range has to be chosen carefully to hear
the changes. Also, with the instrument such as the piano, only the attack part can be
heard since after it decays past the certain value, the bits where the sound is happening
are outside of our 8-bit DAC selection range (the sound control has a 12 bit output, and
typically we select the highest 8 bits). This issue could have been resolved by using a 12-

 31

bit DAC, but since we have already integrated the entire system, every control would
have to have been changed, and at that point it was too late to do anything about it.
I have also created my own top level module called adsroutputs.v. in order to see if the
sound module and the ADSRs can be put together without any compile errors. After that,
I put the sound control onto Chris’s FPGA and tested it there, and the final code of the
adsroutputs became integrated into Chris’s midi_synth.v top level module.

Figure 24. The timing simulation for the sound module.

5. Conclusion
Our group had many lessons to take away from this final project.

First modularity is the key to success in a large project. When there are ten or twenty or
more separate modules, the system is too complex to effectively test and debug once all
assembled. By splitting the project into three main mini-projects (one for each person),
and designing ways for each of the parts to be individually tested, we greatly simplified
the design and implementation process. Each group member was then able to further
split up his or her part of the project into modules that were small enough to manage and
test by themselves.

We also learned that in a project with multiple team members, defining and keeping track
of specification is critical. Although each person was implementing the part on their
own, it was important that each person understood the inputs and outputs the others
expected. This insured that the modules would work well together once assembled. For
example, Val was originally going to design her ADSR so it would take in a “begin note”
and “duration” signal. But Susan and I determined that note duration signals would be
difficult to implement in our song encoding, so Val changed her specification so that only
a “start note” and “end note” signal were required.

It was also important but difficult for us to keep track of code versions and file
hierarchies. The Verilog code did not support the equivalence of inheritance in object-
oriented programming, but there still existed the concept of modules “having” other
modules. Our file structure could not really reflect this because everything was in the
same folder. Also, compilation produced many extra files that cluttered the file space. In
hindsight, we probably should have used a versioning system such as CVS.

 32

In all, we learned to work together as a team. Our victories and failures were ours
together. We learned to compromise on issues we disagreed on, and we helped each
other through good and bad times during the life of the project.

Given enough time, and enough effort, and enough FPGAs, anything is possible.

Appendix A : Susan Hwang’s Implementation

//FRONTEND CONTROL: adds all the modules together and is the main
//interface between the keyboard, clk, buttons and switches. this
//module also acts as a controller that regulates the signals going
//into the modules

module frontendcontrol(clk,start,start1,reset,songorkey,rec,songs,
instrument,kclk,kdata,play1,play2,pitch1,pitch2,outdata,blank,busy);

input clk,reset,songorkey,rec,start,kclk,kdata,start1,blank;
input [1:0] songs;
input [1:0] instrument;

output play1,play2,busy;
output [4:0] pitch1,pitch2;
output [7:0] outdata;

wire play3;
wire [4:0] pitch3;
wire [1:0] songs;
wire [7:0] outdata;
wire [7:0] outmessage;
wire play1r,play2r,play3r,play1m,play2m,play3m;
wire [4:0] pitch1r,pitch2r,pitch3r,pitch1m,pitch2m,pitch3m;
wire [7:0] qrom1,qrom2,qrom3,qram,addressROM,addressRAM,addressRAMm,
addressRAMr,dataram, recdataram, ram_addr, ram_data;
wire weram, ready, ready2, LED, weramr, weramm, we, busy;

songrom1 SongROM1(addressROM,qrom1);
songrom2 SongROM2(addressROM,qrom2);
songrom3 SongROM3(addressROM,qrom3);
recordram recordram(addressRAM,weram,dataram,qram);

//blanks the ROM with blank press
blanktherom blanktherom(clk, blank, busy, ram_addr, ram_data, we);

keyinterface keyinterface(reset,start,kclk,kdata,clk,outdata,ready);
keydecoder keydecoder(clk,instrument,outdata,ready,outmessage,ready2);

realplay realplay(clk,outmessage,play1r,play2r,play3r,pitch1r,pitch2r,
pitch3r);

record record(clk,reset,outmessage,ready2,LED,addressRAMr,weramr,
recdataram,count);

masterunit masterunit(clk,reset,start1,songs,qrom1,qrom2,qrom3,qram,

 33

play1m,play2m,play3m,pitch1m,pitch2m,pitch3m,addressROM,addressRAMm,
weramm);

//if you are blanking, use blank's we else if you are using keyboard
//and recording, let record access we
assign weram = busy? we: (!songorkey&&rec)?weramr:weramm;

//if you are blanking, use blank's ram_addr,else if you are
//added mux to choose between which data to use
assign addressRAM =
busy? ram_addr : (!songorkey&&rec)?addressRAMr:addressRAMm;

//using keyboard and recording, let record access address
assign dataram = busy? ram_data : recdataram;

//these choose which play and pitch to use depending on if we are
//in realplay or song mode
assign play1 = songorkey?play1m:play1r;
assign play2 = songorkey?play2m:play2r;
assign play3 = songorkey?play3m:play3r;
assign pitch1 = songorkey?pitch1m:pitch1r;
assign pitch2 = songorkey?pitch2m:pitch2r;
assign pitch3 = songorkey?pitch3m:pitch3r;

endmodule

 34

//This keydecoder takes the output of the 8 bit key code of
//the keyboard and uses that to find the corresponding musicalnote

module keydecoder(clk,instrument,inkey,ready,outmessage,ready2);
input clk,ready;
input [1:0] instrument;
input [7:0] inkey;
output [7:0] outmessage;
output ready2;

reg ready2;
reg [4:0] current;
reg [4:0] previous;
reg [7:0] outmessage,r1,r2;

always @ (posedge clk) begin

r1 <= outmessage; //to level2pulse the outmessage
r2 <= r1;

//if it is a break, off note then play off message
//when there is a new outmessage, ready2 goes high
if (current == 5'd31) begin
 outmessage <= {instrument,1'b0,5'b00000};
 ready2 <= (r1 != r2) ? 1 : 0;
 end

//if it is NOT a repeat, then play on message
//when there is a new outmessage, ready2 goes high
else if (previous != 5'd31 && inkey != 8'd0 && current != 5'd30) begin
 outmessage <= {instrument,1'b1,current};
 ready2 <= (r1 != r2) ? 1 : 0;
 end

//these are the corresponding pitch codes to the keyboard codes

if(ready) begin
case(inkey)
8'h15: current<= 5'd0; //LOW A
8'h1E: current<= 5'd1; //A#
8'h1D: current<= 5'd2; //B
8'h24: current<= 5'd3; //C
8'h25: current<= 5'd4; //C#
8'h2D: current<= 5'd5; //D
8'h2E: current<= 5'd6; //D#
8'h2C: current<= 5'd7; //E
8'h35: current<= 5'd8; //F
8'h3D: current<= 5'd9; //F#
8'h3C: current<= 5'd10;//G
8'h3E: current<= 5'd11;//G#
8'h1A: current<= 5'd12; //MIDDLE A
8'h1B: current<= 5'd13; //A#
8'h22: current<= 5'd14; //B
8'h21: current<= 5'd15; //C
8'h2B: current<= 5'd16; //C#
8'h2A: current<= 5'd17; //D
8'h34: current<= 5'd19; //D# //i switched 34, with 32

 35

8'h32: current<= 5'd18; //E
8'h31: current<= 5'd20; //F
8'h3B: current<= 5'd21; //F#
8'h3A: current<= 5'd22; //G
8'h42: current<= 5'd23; //G#
8'hF0: current<= 5'd31; //BREAK
default: current<= 5'd30;
endcase
previous <= current;
end
end

endmodule

 36

//The KeyInterface module handles the interface between the PS/2
//Keyboard and the FPGA. It takes in the the clk and data from the
//keyboard and samples the data at low of kclk

module keyinterface(reset,start,kclk,kdata,clk,outdata,ready);

input clk,kclk,kdata,reset,start;
output [7:0] outdata;
output ready;

//must level-to-pulse the kclk, the samples determine
//when the interface samples the kdata from keyboard
lev2pulse Level2Pulse(clk,kclk,sample);

parameter S_INITIAL = 0;
parameter S_1 = 1;

reg [7:0] message,outdata;
reg state,started,ready;
reg [3:0] counter;

always @ (posedge clk) begin
if (reset) begin //at reset, state at initial,
 message <= 0; //nothing is started and keypress is 0;
 state <= S_INITIAL;
 started <= 0;
 end
if (start) //once the start button is pressed,
 started <= 1; //nothing is started and keypress is 0;
else begin
 case(state) //if kdata (start bit) is low and module
 S_INITIAL: begin //started, counter begins and counting and
 //nothing is started and keypress is 0;
 if (~kdata && sample && started) begin
 state <= S_1;
 message <= 0;
 end
 ready <= 0;
 end
 S_1: begin
 if (counter == 4'b1010 && kdata==1)
 begin //when counter reaches 10,

 state <= S_INITIAL;//message has been parsed
 outdata <= message;
 ready <= 1;
 counter <= 0;
 end
 else if (sample) begin //each bit is assigned
 case(counter)
 0: message[0] <= kdata;
 1: message[1] <= kdata;
 2: message[2] <= kdata;
 3: message[3] <= kdata;
 4: message[4] <= kdata;
 5: message[5] <= kdata;

 37

 6: message[6] <= kdata;
 7: message[7] <= kdata;
 endcase
 counter <= counter + 1;
 end
 end
 endcase
 end
end
endmodule

 38

//LEV2PULSE: is used by the keyinterface to level to pulse the
//negative clock edge of the kclk

module lev2pulse(clk,in,out);

 input clk;
 input in;
 output out;

 reg r1,r2,r3;
 always @ (posedge clk)
 begin
 r1 <= in;
 r2 <= r1;
 r3 <= r2;
 end

 // level to pulse converter: taking high to low rise
 assign out = r3 & ~r2;
endmodule

 39

//MASTERUNIT: Interfaces with the 4 memory units to take the messages
//stored in the memory units and translating the messages to control
//the 3 instruments. It has an external control that determines which
song it will play.

module masterunit(clk,reset,start,songs,ROM1data,ROM2data,
ROM3data,RAMdata,play1,play2,play3,pitch1,pitch2,pitch3,addressROM,
addressRAM,we);

input reset,start,clk;
input [1:0] songs; //songs determines roms to read from
input [7:0] ROM1data,ROM2data,ROM3data,RAMdata;

output play1,play2,play3,we;
output [4:0] pitch1, pitch2, pitch3;
output [7:0] addressROM,addressRAM;

parameter S_INITIAL = 0;
parameter S_1 = 1;
parameter S_2 = 2;
parameter S_3 = 3;
parameter S_4 = 4;

reg startedcount,startedROM,play1,play2,play3;
reg [2:0] state;
reg [5:0] count;
reg [4:0] pitch1,pitch2,pitch3;
reg [7:0] address,data;

//wire change;
counter THEcounter(clk,count,startedcount,change);

always @ (posedge clk) begin

case(songs) //songs selects which ROMdata to use
2'b00: data <= RAMdata; //this is from recordram
2'b01: data <= ROM1data; //this plays "fur elise"
2'b10: data <= ROM2data; //this play "silent night"
2'b11: data <= ROM3data; //this is empty
endcase

if(reset) begin //everything is initialized
 state <= S_INITIAL;
 startedcount <= 0;
 play1 <= 0;
 play2 <= 0;
 play3 <= 0;
 pitch1 <= 0;
 pitch2 <= 0;
 pitch3 <= 0;
 startedROM <= 0;
 end
else begin
 case(state)
 S_INITIAL: begin
 if (start) //waits for start to start playing
 state <= S_1;

 40

 else
 address <= 0;
 end
 S_1: begin //This reads from the memory unit
 startedROM <= 1;
 state <= S_2;
 if (startedROM)
 address <= address + 1;
 end
 S_2: state <= S_3; //buffer state
 S_3: begin
 case(data[7:6]) //parses the message
 2'b00: begin //This case is the special "pass"
 startedcount <= 1; //start counting
 count <= data[5:0];
 state <= S_4; //go to S_4 to wait for count
 end
 2'b01: begin //This case is the instrument 1
 play1 <= data[5];
 pitch1 <= data[4:0];
 state<= S_1; //go to S_1 to access next address
 end
 2'b10: begin //This case is the instrument 2
 play2 <= data[5];
 pitch2 <= data[4:0];
 state<= S_1;
 end
 2'b11: begin //This case is the instrument 3
 play3 <= data[5];
 pitch3 <= data[4:0];
 state<= S_1;
 end
 endcase
 end
 S_4: if (change) //if change, itis time to access
 begin //the next address, S_1
 state <= S_1;
 startedcount <= 0;
 end
 endcase
end
end

assign addressROM = address;
assign addressRAM = address;
assign we = 0; // we is always 0 because it is always reading

endmodule

 41

//This module msdivider divides the clock into
//eighth-notes. This is how we determine
//how fast to play the stored songs and
//how fast to record the key-input songs
//1-bit equals (1/8 of a second)

module msdivider(clk,enable);
 input clk;
 output enable;

 reg [19:0] counter;
 reg temp_enable;
 always @ (posedge clk)
 begin

if (counter == 20'd460800)
 counter <= 0;
 else
 counter <= counter+1;
 if (counter == 0)
 temp_enable <= 1;
 else
 temp_enable <= 0;
 end

 assign enable = temp_enable;

endmodule

 42

//REALPLAY: takes in a message from the keydecoder and translates it
//into control signals for ONE instrument while the other instruments
//are silent.

module realplay(clk,message,play1,play2,play3,pitch1,pitch2,pitch3);

input clk;
input [7:0] message;

output play1,play2,play3;
output [4:0] pitch1,pitch2,pitch3;

reg play1,play2,play3;
reg [4:0] pitch1,pitch2,pitch3;

always @ (posedge clk) begin
case(message[7:6]) //selects which instrument is playing
2'b01: begin
 play1 <= message[5];
 pitch1 <= message[4:0];
 end
2'b10: begin
 play2 <= message[5];
 pitch2 <= message[4:0];
 end
2'b11: begin
 play3 <= message[5];
 pitch3 <= message[4:0];
 end
default : ;
endcase
end
endmodule

 43

//The Record Module in enabled from external control button called rec
//and stores entries from keyboard input while counting the time that
//passes between each subsequent message and adds in pass messages.

module record(clk,reset,musicdata,ready2,LED,address,we,data,count,
startcounter,stopcounter);

input clk,ready2,reset;
input [7:0] musicdata;

output [7:0] address,data;
output LED,we,startcounter,stopcounter;
output [5:0] count;

parameter S_INITIAL = 0;
parameter S_1 = 1;
parameter S_2 = 2;
parameter S_3 = 3;
parameter S_4 = 4;
parameter S_5 = 5;
parameter S_6 = 6;

reg we,LED,started;
reg [3:0] state;
reg startcounter,stopcounter;
reg [7:0] data,address;

//recordcounter takes care of counting the length of keypresses
wire [5:0] count;
recordcounter recordcounter(clk,startcounter,stopcounter,count);

always @ (posedge clk) begin

if (reset)
 state <= S_INITIAL;
else
 case(state)
 S_INITIAL: begin //initial state, initializes variables
 address <= 0;
 we <= 0;
 data <= 0;
 started <= 0;
 if (ready2) begin // new message
 state <= S_1;
 end
 end
 S_1: begin //get the data and address prepared for write
 started <= 1;
 we <= 0;
 data <= musicdata;
 if(started)
 address <= address + 1;
 state <= S_2;
 end
 S_2: begin //the message gets written to the recordram
 we <= 1; //while the counter begins to count
 state <= S_3;

 44

 end
 S_3: begin // buffer state, stopping we while
 we <= 0;
 if(ready2) begin //new message
 state <= S_4; //to be stored
 end
 end
 S_4: begin //the counter is stopped and stores time
 we <= 0;
 data <= {2'b0,count};
 address <= address + 1;
 state <= S_5;
 end
 S_5: begin //the time message is now stored
 we <= 1;
 state <= S_6;
 end
 S_6: begin //this is the buffer state
 we <= 0;
 state <= S_1;
 end

 endcase

startcounter <= (state==S_2)?1:0; //the start of the time recording
stopcounter <= (state==S_4)?1:0; //the stop of the time recording
LED <= (address == 8'hFF)? 1:0; //indicates the end of the song
end
endmodule

 45

//RECORDCOUNTER: Is in charge of recording the length of the
//keypresses from the keyboard which is stored in the variable count.
//This length message in turn is stored into the recordram.
//The record module determines when the recordcounter starts and
//stops counting.

module recordcounter(clk,startcounter,stopcounter,count);

input clk,startcounter,stopcounter;
output [5:0] count;

msdivider THEdivider(clk,enable);

reg [5:0] count;
reg started;

always @ (posedge clk) begin
if (startcounter) begin
 started <= 1;
 count <= 0;
 end
else if (stopcounter)
 started <= 0;
else if (started&&enable)
 count <= count + 1;
end
endmodule

 46

//BLANKTHEROM: blanks the RECORD RAM
module blanktherom(clk, start, busy, rom_addr, rom_data, we);

 // Blanks a RAM (misnamed) by writing zeros to all of its
 // addresses

 input clk, start;
 output busy, we;
 output [7:0] rom_addr, rom_data;

 // always write a zero
 assign rom_data = 0;

 reg [2:0] state;
 reg busy;
 reg [7:0] rom_addr;
 reg we;

 // human-controlled start button must be synchronized
 wire start_sync;
 button butt(clk, start, start_sync);

 always @ (posedge clk) begin
 if (start_sync) begin
 busy <= 1;
 rom_addr <= 0;
 state <= 0;
 end
 if (busy) begin
 case (state)
 0: begin // wait state
 state <= 1;
 end
 1: begin // write a zero
 we <= 1;
 state <= 2;
 end
 2: begin // stop writing
 we <= 0;
 state <= 3;
 end
 3: begin // increment the rom address
 rom_addr <= rom_addr + 1;
 state <= 0;
 end
 endcase
 if (rom_addr == 8'hFF) begin // reset the
address
 rom_addr <= 0;
 busy<= 0;
 end
 end
 end
endmodule

 47

Appendix B : Chris Sheehan’s Implementation
with .v, .mif, and .py files

Midi_synth.v
module midi_synth(clk, reset, result, dabar, pitchA, pitchB, play1,
play2,
 start_c, busy_c, sample, violin_sound, volup, voldown,
vol_control);

 // Top level module that takes control signals (play, pitch) for
three instruments,
 // as well as volume information, and outputs the combined signal
of the three finished
 // instruments for a DAC.
 //
 // Because of space limitations, two of the instruments (piano and
flute) are loaded into
 // this top module, and the other instrument is loaded onto the
control FPGA.

 input volup, voldown, vol_control;

 // The signals controlling the external instrument
 input busy_c;
 output start_c, sample;
 input [7:0] violin_sound;

// Control signals for internal instruments

 input [4:0] pitchA, pitchB;
 wire [4:0] pitchA, pitchB;
 input play1, play2;
 wire play1, play2;

 parameter ROM_data_length = 8; // how many data bits
 parameter ROM_addr_length = 8; // how many address bits

 input clk, reset;

 // Final result, with dabar to time the DAC
 output [ROM_data_length:0] result;
 output dabar;

wire sample;
 divider diver(clk, reset, sample); // divide the clock into the
sampling rate

 // DAC FSM asks each of the instrument modules for the next sample
 wire busy_a, start_a, busy_b, start_b, busy_c, start_c;
 dac_fsm dacfsm(clk, sample, busy_a, start_a, busy_b, start_b,
busy_c, start_c, dabar);

 48

 // Intermediate data wires

 wire [ROM_data_length-1:0] piano_out;
 wire [ROM_data_length-1:0] flute_out;
 wire [ROM_data_length-1:0] violin_out;

 wire [ROM_data_length-1:0] piano_temp;
 wire [ROM_data_length-1:0] flute_temp;

 // Convert the instrument outputs to

 wire [10:0] inter_output_a, inter_output_b;

 assign inter_output_a = {~piano_temp[7], {~piano_temp[7],
piano_temp[7:1] - 7'b1000000 } };

 assign inter_output_b = {~flute_temp[7], {~flute_temp[7],
flute_temp[7:1] - 7'b1000000 } };

 wire busypiano, busyflute;

 // The final outputs from the flute and piano

wire [7:0] result_a;
wire [7:0] result_b;

 // The internal instruments

 piano instr1(clk, play2, pitchB, reset, start_a, busy_a,
piano_temp);

 flute instr2(clk, play1, pitchA, reset, start_b, busy_b,
flute_temp);

 // ADSR units post-process the tones from the raw instruments

 adsrpiano mypiano(clk, reset, inter_output_a, ~play2, play2,
busypiano, sample, result_a);

 adsrflute myflute(clk, reset, inter_output_b, ~play1, play1,
busyflute, sample, result_b);

 // Synchronize the human volume control buttons
 wire volup_sync, voldown_sync;

 button butter(clk, volup, volup_sync);
 button bitter(clk, voldown, voldown_sync);

 wire[11:0] flute_result;
 wire[11:0] piano_result;
 wire[11:0] violin_result;

 soundcontrol_flute controllerflute(clk, reset, volup_sync,
voldown_sync, result_b, flute_result);

 49

 soundcontrol_violin controllerviolin(clk, reset, volup_sync,
voldown_sync, violin_sound, violin_result);

 wire [10:0] result_temp;

 // Select volume controlled instruments, or not

 assign result_temp = (vol_control) ? piano_result[9:2]
+flute_result[10:3]+ violin_result[10:3] :
 result_b
+result_a+ violin_sound;

 // convert back to straight binary
 assign result = {~result_temp[8], result_temp[7:1]};

endmodule

Button.v
module button(clk, in, out);

 // Module synchronizes a slow, asynchronous human input
 // Converts the level input to a one-clk pulse

 input clk;
 input in;
 output out;

 // Avoid a metastable state with cascaded registers

 reg r1,r2,r3;

 always @ (posedge clk)
 begin
 r1 <= in;
 r2 <= r1;
 r3 <= r2;
 end

 // level to pulse
 assign out = ~r3 & r2;

endmodule

Combiner.v
module combiner(in_a, in_b, in_c, out);

 // take three 8 bit inputs in straight binary format
 // output an 8 bit number that is the sum of all three, taken as
 // one-fourth of each input, summed.

 // this was not used in the final project, but it was very useful
for testing
 // it has now been partially replaced by val's volume controller

 input [7:0] in_a, in_b, in_c;
 output [7:0] out;

 wire [8:0] result1, result2, result3, result_temp;

 50

 wire [15:0] b_scaled;
 wire [7:0] final_b;

 multer mult(3, in_b, b_scaled);
 //division divider(2, b_multiplied, b_scaled);

 assign final_b = vol_up ? in_b : b_scaled[15:8];

 // convert to two's complement and shift
 assign result1 = {~in_a[7], {~in_a[7], in_a[7:1] - 7'b1000000 } };
 assign result2 = {~in_b[7], {~in_b[7], in_b[7:1] - 7'b1000000 } };
 assign result3 = {~in_c[7], {~in_c[7], in_c[7:1] - 7'b1000000 } };

 // sum them and convert back to straight binary
 assign result_temp = result1 + result2 + result3;

 assign out = {~result_temp[8], result_temp[7:1]};

endmodule

Dac_fsm.v

module dac_fsm(clk, sample, busy_a, start_a,
 busy_b, start_b, busy_c, start_c, dabar);
 // controls the instrument sampling and output to DAC
 // tells each instrument to interpolate once per sample period

 input clk, sample;
 input busy_a, busy_b, busy_c; // instrument A is busy

 output start_a, start_b, start_c; // start instrument A
 output dabar; // CS and CE bar of the DAC

 reg [1:0] state;
 reg dabar, start_a, start_b, start_c;

 always @ (posedge clk)
 begin

 case (state)
 0: begin // wait for sample
 state <= sample ? 1 : state;
 dabar <= 1;
 end
 1: begin // output to DAC
 state <= 2;
 dabar <= 0;
 end
 2: begin // start interpolation(s)
 state <= (busy_a && busy_b && busy_c) ? 3 :
state; //(busy_a && busy_b) ? 3 : state;
 start_a <= 1;
 start_b <= 1;
 start_c <= 1;
 dabar <= 1;
 end
 3: begin // wait for interpolation(s)
 state <= ~(busy_a || busy_b || busy_c) ? 0 :
state; //~(busy_a || busy_b) ? 0 : state;
 start_a <= 0;
 start_b <= 0;
 start_c <= 0;

 51

 end
 default: state <= 0; // go to wait state
 endcase
 end

endmodule

Divider.v

module divider(clk, reset_sync, enable);

 // controls the sampling rate for this project
 // the stored waveform samples have 256 datapoints for
 // two complete periods. the signal should produce a
 // 440 Hz "A" note, so this works out to 558 samples per
 // 1/100 sec, if we are using the 1.8432 MHz clock

 input clk, reset_sync;
 output enable;

 reg [0:10] count;
 reg enable;

 always @ (posedge clk)
 begin
 if (count == 10'd33) // 558 enables per 1/100 sec
 begin
 enable <= 1;
 count <= 0;
 end

 else begin

 enable <= 0;

 if (reset_sync)
 begin
 count <= 0;
 end

 else begin
 count <= count + 1;
 end
 end
 end

endmodule

Instrument.v

module instrument(clk, play, note_val, reset, start, busy, result);

 // a generic instrument file. each instrument will have it's own
ROM
 // the instrument has a note_lookup table, an interp_fsm to
control it
 // and process the start and reset signals, and an interp_calc to
actually
 // calculate the interpolation result.

 parameter ROM_data_length = 8; // how many data bits
 parameter ROM_addr_length = 8; // how many address bits

 52

 input clk;
 input play; // signal to start playing from the
song fsm
 input reset, start; // overall control signals
 input [4:0] note_val; // numerical note / pitch value ("C" "D"
or "E"...)

 output busy; // tells dac_fsm it is still
performing interpolation
 output [ROM_data_length-1:0] result; // the result of this
sample

 wire [9:0] increment_val; // amount to increase frequency of
stored ROM sample

 wire [4:0] note_val;
 note_lookup_rom notelookup(note_val, increment_val); // note
value lookup table

 wire [ROM_data_length-1:0] rom_data;
 wire [ROM_addr_length-1:0] rom_addr;
 wire [ROM_data_length-1:0] val_a;
 wire [ROM_data_length-1:0] val_b;
 wire [7:0] fraction;
 wire start_internal; //FSM doesn't start if play
isn't high
 wire [ROM_data_length-1:0] interp_result; // result is zero if
play isn't high

 assign start_internal = start;

 interp_fsm interpfsm(clk, increment_val, rom_data, reset,
start_internal, busy, val_a, val_b,

 rom_addr, fraction); // interpolation fsm

 // this may be replaced with flutewaverom, pianowaverom, or
violinwaverom
 // to produce a flute, piano, or violin instruement. doing this
produces
 // three separate verilog files

 sinerom romrom(rom_addr, rom_data);

 interp_calc interpcalc(fraction, val_a, val_b, interp_result);
 // interpolation calculator

 reg [7:0] result_internal;

 // because the stored samples produce data values that are
 // straight binary, the "zero" value produced when nothing is
being
 // played should be the average value of the signal, or 128 here

 assign result = play ? interp_result: 128;

endmodule

 53

Interp_calc.v

module interp_calc(fraction, low_val, high_val, result);//,
high_result);

// perform linear interpolation given two values and fraction

 parameter ROM_data_length = 8; // how many data bits
 parameter ROM_addr_length = 8; // how many address bits

 input [7:0] fraction; // fractional part of the virtual ROM
address

 input [ROM_data_length-1:0] low_val; // value in ROM before
the virtual address
 input [ROM_data_length-1:0] high_val; // value in ROM after
the virtual address

 output [ROM_data_length-1:0] result; // result of
interpolation (integer)

 // find the fraction complement to multiply the low value by
 wire [7:0] comple_fract = 1 - fraction;

 // Get the weighted part of the high value
 wire [15:0] high_result;
 multer multhigh(high_val, fraction, high_result);

 // Get the weighted part of the low value
 wire [15:0] low_result;
 multer multlow(low_val, comple_fract, low_result);

 // Add them together and output the correct range
 wire [15:0] result_temp = high_result + low_result;

 assign result = result_temp[15:8];

endmodule

Interp.fsm.v

module interp_fsm(clk, increment, rom_data, reset, start,
 busy, val_a, val_b, rom_addr,
 virtual_rom_addr,
 fraction
);

// keeps track of a virtual address pointer representing the address of
the sample in ROM
// that we would like to interpolated the value of (i.e. ROM[1.34]).
the module increments
// this value every time it is invoked by the input increment, or it
resets the address if
// reset is asserted. the module passes the values in the nearest ROM
addresses (1 and 2 if
// the virtual address is 1.34), as well as the fractional part of the

 54

virtual address (0.34),
// to an interpolator calculation unit.

 parameter ROM_data_length = 8; // how many data bits
 parameter ROM_addr_length = 8; // how many address bits

input clk;
 input start; // tells the FSM to begin interpolating
 input reset;

 input [9:0] increment; // amount to increment virtual address to
ROM
 // amount to increase the frequency of the
sampled data in ROM
 // top 2 bits are integer part, bottom 8
are fractional part

input [ROM_data_length-1:0] rom_data; // sampled data

 output busy; // indicates that interpolation has not finished
 output [ROM_data_length-1:0] val_a; // first sampled data value
 output [ROM_data_length-1:0] val_b; // second sampled data value
 // these values go into the
interpolation computer module,
 // which will take a weighted
average of them

output [ROM_addr_length-1:0] rom_addr; // real ROM address
 output [ROM_addr_length + 7:0] virtual_rom_addr;

 output [7:0] fraction;

 reg [3:0] state;
 reg [ROM_addr_length + 7:0] virtual_rom_addr;
 // the address that we will
interpolate the value of
 // top bits are integer part,
bottom 8 are the fractional part

 assign fraction = virtual_rom_addr[7:0]; // fractional part of
virtual rom address

 reg [ROM_addr_length-1:0] rom_addr;
 reg [ROM_data_length-1:0] val_a;
 reg [ROM_data_length-1:0] val_b;

 wire [ROM_addr_length-1:0] low_rom_addr; // floor{virtual
address}
 wire [ROM_addr_length-1:0] high_rom_addr; // ceiling{virtual
address}

 assign low_rom_addr = {virtual_rom_addr[(ROM_addr_length + 7) :
8]};
 // the lower ROM address is the integer value of the virtual one

 assign high_rom_addr = low_rom_addr + 1;

 // the higher ROM address is one more than the lower one

 55

 reg busy;
 reg [12:0] counter;

 always @ (posedge clk)
 begin
 if (reset)
 state <= 0;

 else begin

 case (state)
 0: begin
 state <= 1; //
reset the virtual address
 virtual_rom_addr <= 0;
 busy<=0;
 end

 1: begin state <= start ? 2 : state; //
wait for start signal
 busy <=0; end

 2: begin
 state <= 3; //
increment the virtual address
 virtual_rom_addr <= virtual_rom_addr +
increment;
 busy <= 1;
 end

 3: begin
 state <= 4; //
assert the lower sample address
 rom_addr <= low_rom_addr[ROM_addr_length-1:0];
 end

 4: begin
 state <= 5; //
read the lower sample data
 val_a <= rom_data;
 end

 5: begin
 state <= 6; //
assert ths higher sample address
 rom_addr <= high_rom_addr;
 end

 6: begin
 state <= 7; //
read the lower sample data
 val_b <= rom_data;
 end

 7: begin
 state <= 1;
 end

 default: state <= 0;

 endcase
 end

 56

 end

endmodule

Manual_play.v

module manual_play(clk, reset, play1, play2, pitch, result, dabar);

 // play notes on instruments through manual inputs on FPGA
 // for testing only

 parameter ROM_data_length = 8; // how many data bits
 parameter ROM_addr_length = 8; // how many address bits

 input clk, reset, play1, play2;
 output [ROM_data_length-1:0] result;
 output dabar;

 input [4:0] pitch;
 wire [4:0] pitch;

 wire sample;
 divider diver(clk, reset, sample);

 wire busy_a, start_a;
 dac_fsm dacfsm(clk, sample, busy_a, start_a, busy_b, start_b,
busy_c, start_c, dabar);

 wire [ROM_data_length-1:0] result_temp1;
 wire [ROM_data_length-1:0] result_temp2;

 wire [8:0] result1;

 // add up half the first result plus a fourth of the second result

 assign result1 = {~result_temp1[7], result_temp1 - 8'b10000000 } +
{~result_temp2[7],{~result_temp2[7], result_temp2[7:1] - 7'b1000000 } };

 assign result = {~result1[8], result1[7:1]};

 wire play1, play2;

 // two regular instruments

 instrument instr1(clk, play1, pitch, reset, start_a, busy_a,
result_temp1);

 instrument instr2(clk, play2, 5'b11100, reset, start_b, busy_b,
result_temp2);

endmodule

Note_lookup.v

module note_lookup(note_val, increment_val);
 // DUMMY note lookup table for testing

 // looks up a note value (between 0 and 24) in a ROM, and converts
it to an
 // increment value. this is the value by which we must increase
the
 // frequency of the sample in ROM in order to produce the desire
note, like

 57

 // a "C."

 input [4:0] note_val; // integer from 0 - 24
 // 0 is the low C, 12 is middle C, 24 is high C
 output [9:0] increment_val;
 // lower 8 bits are fractional
part, higher bits are integer

 assign increment_val = 10'h100; // output constant for
now

endmodule

Song MIF Files
FurElise.mif
WIDTH = 8;
DEPTH = 256;

ADDRESS_RADIX = DEC;
DATA_RADIX = DEC;

CONTENT BEGIN
 0 : 1;
 1 : 115;
 2 : 1;
 3 : 64;
 4 : 114;
 5 : 1;
 6 : 64;
 7 : 115;
 8 : 1;
 9 : 64;
 10 : 114;
 11 : 1;
 12 : 64;
 13 : 115;
 14 : 1;
 15 : 64;
 16 : 110;
 17 : 1;
 18 : 64;
 19 : 113;
 20 : 1;
 21 : 64;
 22 : 111;
 23 : 1;
 24 : 64;
 25 : 108;
 26 : 160;
 27 : 1;
 28 : 128;
 29 : 167;
 30 : 1;
 31 : 128;
 32 : 64;
 33 : 172;
 34 : 1;
 35 : 128;
 36 : 99;
 37 : 1;
 38 : 64;
 39 : 103;

 58

 40 : 1;
 41 : 64;
 42 : 108;
 43 : 1;
 44 : 64;
 45 : 110;
 46 : 167;
 47 : 1;
 48 : 128;
 49 : 171;
 50 : 1;
 51 : 128;
 52 : 64;
 53 : 174;
 54 : 1;
 55 : 128;
 56 : 103;
 57 : 1;
 58 : 64;
 59 : 107;
 60 : 1;
 61 : 64;
 62 : 110;
 63 : 1;
 64 : 64;
 65 : 111;
 66 : 160;
 67 : 1;
 68 : 128;
 69 : 167;
 70 : 1;
 71 : 128;
 72 : 64;
 73 : 172;
 74 : 1;
 75 : 128;
 76 : 103;
 77 : 1;
 78 : 64;
 79 : 115;
 80 : 1;
 81 : 64;
 82 : 114;
 83 : 1;
 84 : 64;
 85 : 115;
 86 : 1;
 87 : 64;
 88 : 114;
 89 : 1;
 90 : 64;
 91 : 115;
 92 : 1;
 93 : 64;
 94 : 110;
 95 : 1;
 96 : 64;
 97 : 113;
 98 : 1;
 99 : 64;
 100 : 111;
 101 : 1;
 102 : 64;
 103 : 108;

 59

 104 : 160;
 105 : 1;
 106 : 128;
 107 : 167;
 108 : 1;
 109 : 128;
 110 : 64;
 111 : 172;
 112 : 1;
 113 : 128;
 114 : 99;
 115 : 1;
 116 : 64;
 117 : 103;
 118 : 1;
 119 : 64;
 120 : 108;
 121 : 1;
 122 : 64;
 123 : 110;
 124 : 167;
 125 : 1;
 126 : 128;
 127 : 171;
 128 : 1;
 129 : 128;
 130 : 64;
 131 : 174;
 132 : 1;
 133 : 128;
 134 : 103;
 135 : 1;
 136 : 64;
 137 : 107;
 138 : 1;
 139 : 64;
 140 : 110;
 141 : 1;
 142 : 64;
 143 : 108;
 144 : 160;
 145 : 1;
 146 : 128;
 147 : 167;
 148 : 1;
 149 : 128;
 150 : 172;
 151 : 1;
 152 : 128;
 153 : 1;
 154 : 64;
 155 : 4;
 156 : 0;
 157 : 0;
 :
 :
 :
 % continued….%

END;

SilentNight.mif
WIDTH = 8;
DEPTH = 256;

 60

ADDRESS_RADIX = DEC;
DATA_RADIX = DEC;

CONTENT BEGIN
 0 : 108;
 1 : 165;
 2 : 233;
 3 : 3;
 4 : 64;
 5 : 110;
 6 : 1;
 7 : 64;
 8 : 108;
 9 : 2;
 10 : 64;
 11 : 128;
 12 : 192;
 13 : 105;
 14 : 160;
 15 : 229;
 16 : 6;
 17 : 64;
 18 : 128;
 19 : 192;
 20 : 108;
 21 : 165;
 22 : 233;
 23 : 3;
 24 : 64;
 25 : 110;
 26 : 1;
 27 : 64;
 28 : 108;
 29 : 2;
 30 : 64;
 31 : 128;
 32 : 192;
 33 : 105;
 34 : 160;
 35 : 229;
 36 : 6;
 37 : 64;
 38 : 128;
 39 : 192;
 40 : 115;
 41 : 160;
 42 : 240;
 43 : 3;
 44 : 64;
 45 : 128;
 46 : 192;
 47 : 1;
 48 : 115;
 49 : 160;
 50 : 240;
 51 : 2;
 52 : 64;
 53 : 128;
 54 : 192;
 55 : 112;
 56 : 172;
 57 : 231;
 58 : 5;

 61

 59 : 64;
 60 : 128;
 61 : 192;
 62 : 1;
 63 : 113;
 64 : 172;
 65 : 243;
 66 : 3;
 67 : 64;
 68 : 128;
 69 : 192;
 70 : 1;
 71 : 113;
 72 : 172;
 73 : 243;
 74 : 2;
 75 : 64;
 76 : 128;
 77 : 192;
 78 : 108;
 79 : 165;
 80 : 233;
 81 : 6;
 82 : 64;
 83 : 128;
 84 : 192;
 85 : 110;
 86 : 165;
 87 : 234;
 88 : 3;
 89 : 64;
 90 : 128;
 91 : 192;
 92 : 1;
 93 : 110;
 94 : 165;
 95 : 234;
 96 : 2;
 97 : 64;
 98 : 128;
 99 : 192;
 100 : 113;
 101 : 234;
 102 : 165;
 103 : 3;
 104 : 64;
 105 : 112;
 106 : 1;
 107 : 64;
 108 : 110;
 109 : 2;
 110 : 64;
 111 : 128;
 112 : 192;
 113 : 108;
 114 : 165;
 115 : 233;
 116 : 3;
 117 : 64;
 118 : 110;
 119 : 1;
 120 : 64;
 121 : 108;
 122 : 2;

 62

 123 : 64;
 124 : 128;
 125 : 192;
 126 : 105;
 127 : 165;
 128 : 6;
 129 : 64;
 130 : 128;
 131 : 110;
 132 : 165;
 133 : 234;
 134 : 3;
 135 : 64;
 136 : 128;
 137 : 192;
 138 : 1;
 139 : 110;
 140 : 165;
 141 : 234;
 142 : 2;
 143 : 64;
 144 : 128;
 145 : 192;
 146 : 113;
 147 : 234;
 148 : 165;
 149 : 3;
 150 : 64;
 151 : 112;
 152 : 1;
 153 : 64;
 154 : 110;
 155 : 2;
 156 : 64;
 157 : 128;
 158 : 192;
 159 : 108;
 160 : 165;
 161 : 233;
 162 : 3;
 163 : 64;
 164 : 110;
 165 : 1;
 166 : 64;
 167 : 108;
 168 : 2;
 169 : 64;
 170 : 128;
 171 : 192;
 172 : 105;
 173 : 165;
 174 : 6;
 175 : 64;
 176 : 128;
 177 : 115;
 178 : 240;
 179 : 160;
 180 : 3;
 181 : 64;
 182 : 192;
 183 : 1;
 184 : 115;
 185 : 240;
 186 : 2;

 63

 187 : 64;
 188 : 128;
 189 : 192;
 190 : 118;
 191 : 160;
 192 : 231;
 193 : 3;
 194 : 64;
 195 : 115;
 196 : 1;
 197 : 64;
 198 : 112;
 199 : 2;
 200 : 64;
 201 : 128;
 202 : 192;
 203 : 113;
 204 : 165;
 205 : 236;
 206 : 5;
 207 : 64;
 208 : 128;
 209 : 192;
 210 : 1;
 211 : 117;
 212 : 165;
 213 : 236;
 214 : 5;
 215 : 64;
 216 : 128;
 217 : 192;
 218 : 1;
 219 : 113;
 220 : 165;
 221 : 224;
 222 : 2;
 223 : 64;
 224 : 108;
 225 : 2;
 226 : 64;
 227 : 105;
 228 : 2;
 229 : 64;
 230 : 128;
 231 : 192;
 232 : 160;
 233 : 108;
 234 : 3;
 235 : 64;
 236 : 106;
 237 : 1;
 238 : 64;
 239 : 103;
 240 : 2;
 241 : 64;
 242 : 128;
 243 : 113;
 244 : 172;
 245 : 12;
 246 : 64;
 247 : 128;
 248 : 12;
 249 : 0;
 250 : 0;

 64

 251 : 0;
 252 : 0;
 253 : 0;
 254 : 0;
 255 : 0;

END;

Python Code
ROM_generator.py
Makes a ROM of specified length and width containing
coefficients for a number of periods of a sine wave.

import math

depth = 256 # number of lines in the ROM
width = 8 # width of ROM (in bits)
periods = 2 # number of periods per ROM

highest = int(math.pow(2, width))

romfile = open('c://sineReg.mif','w')

romfile.write('WIDTH = ' + str(highest) + ';\n')
romfile.write('DEPTH = ' + str(depth) + ';\n')
romfile.write('\n\n')
romfile.write('ADDRESS_RADIX = DEC;\n')
romfile.write('DATA_RADIX = DEC;\n\n')
romfile.write('CONTENT BEGIN\n')

for address in range(depth):
 num = address * (periods*2*math.pi)/depth
 result = math.sin(num)
 data = int(round(highest/2 * result + highest/2))
 line = '\t' + str(address) + '\t:\t' + str(data) + ';\n'
 romfile.write(line)
 print line

romfile.write('\nEND;\n')

romfile.close()

Songwriter.py

creates a .mif file from pseudo code in a text file
ROM length is always 256

import string

fundamental = 1 # clicks per pause
length = 256 # length of ROM

convert a line of pseudocode to a .mif line
def convert_line(line):
 end = string.find(line, '\n')
 print line

 # off signal
 if (line[0:3] == 'off'):

 65

 instrument = int(line[3:end])
 message = get_instrument(instrument)

 # pause signal
 elif (line[0] == 'p'):
 message = int(line[1:end])

 # on signal
 else:
 split = string.find(line, 'o')
 instrument = int(line[0:split])
 note = int(line[split+1:end])

 message = 32 + note + get_instrument(instrument)

 return str(message)

based on instrument, get the decimal value for the instruction
def get_instrument(instr):
 if (instr==1):
 return 64
 elif (instr==2):
 return 128
 else:
 return 192

input file name
filein = open('c:\\python23\\work\\silentnight.txt','r')
lines = filein.readlines()

filein.close

output filename
fileout = open('c:\\python23\\work\\silentnight.mif','w')

beginning of ROM file
fileout.write('WIDTH = 8;\n')
fileout.write('DEPTH = ' + str(length) + ';\n')
fileout.write('\n\n')
fileout.write('ADDRESS_RADIX = DEC;\n')
fileout.write('DATA_RADIX = DEC;\n\n')
fileout.write('CONTENT BEGIN\n')

outputlines = []

for i in range(length):
 outputlines.append('0')

counter = 0

step through all the lines in the file
for line in lines:
 # skip comment lines beginning with -----
 if (line[0] != '-'):
 outputlines[counter] = convert_line(line)
 counter = counter + 1

print outputlines

create the .mif file
for address in range(length):
 data = outputlines[address]

 66

 theline = '\t' + str(address) + '\t:\t' + str(data) + ';\n'
 fileout.write(theline)

fileout.write('\nEND;\n')

fileout.close()

Appendix C: Valerie Gordeski’s Implementation
with .mif files

ADSRPIANO.V

// This module sets the envelope shape for the piano
module ADSRpiano(clk, reset, inter_output, endtime, start, busy,
enable, result);

input start, enable, reset, clk, endtime;
input[7:0] inter_output;

output busy;
output[7:0] result;

reg[6:0] atkptr, decayptr, susptr; // pointers used to keep track of
//where we are in memory
reg[14:0] counter;
reg[8:0] counter_temp;
reg[1:0] state;
reg[6:0] addressrom;
reg busy;
wire[7:0] q1;
wire[7:0] q2;
wire[15:0] resultmult;

parameter attack=1;
parameter decay=2;
parameter sustain=3;
parameter idle=0;

assign q2 = inter_output; // this is what goes into the multiplier
assign result = resultmult[15:8]; // we select highest bits of the
//result as our output

// this rom stores the envelope coefficients
pianoROM mypianorom (addressrom, q1); // q1 is unsigned

// this multiplier multiplies the coefficients by the interpolator
//output
pianomult mymult (q1, q2, resultmult);

always @ (posedge clk)
begin

 67

 if (reset)
 begin
 state<=idle;
 end
 else case (state)
 attack:
 begin
 addressrom<=atkptr; // keep track of address
 if (enable)
 begin
 if (endtime)
 state<=idle;
 else if (counter == 2618) // change state
 //else if (counter == 30)
 begin
 counter<=0;
 counter_temp<=0;
 atkptr<=0;
 state<=decay;
 end
 else if (counter_temp == 109) // increment pointer
 //else if (counter_temp == 5)
 begin
 counter_temp<=0;
 counter<=counter+1;
 atkptr <= atkptr+1;
 state <= state;
 end
 else
 begin
 counter_temp<=counter_temp+1;
 counter<=counter+1;
 state<=state;
 end
 end
 end
 decay:
 begin
 if (enable)
 begin
 addressrom<=decayptr;
 if (endtime)
 state<=idle;
 else if (counter == 872)
 // else if (counter == 10)
 begin
 counter<=0;
 counter_temp<=0;
 state<=sustain;
 decayptr<=24;
 end
 else if (counter_temp == 109)
 //else if (counter_temp == 5)
 begin
 counter_temp<=0;
 counter<=counter+1;
 decayptr<= decayptr+1;

 68

 state<=state;
 end
 else
 begin
 counter_temp<=counter_temp+1;
 counter<=counter+1;
 state<=state;
 end
 end
 end
 sustain:
 begin
 addressrom<=susptr;
 if (endtime)
 begin
 counter<=0;
 counter_temp <=0;
 state <= idle;
 end
 else if (enable)
 begin
 if (susptr==127)
 begin
 susptr<=119;
 counter<=0;
 counter_temp<=0;
 state<=state;
 end
 else if (counter_temp == 109)
 //else if (counter_temp == 5)
 begin
 counter_temp<=0;
 susptr<=susptr+1;
 end
 else
 begin

 counter_temp<=counter_temp+1;
 state<=state;
 end
 end // elseif enable
 end // sustain
 idle:
 begin
 atkptr<=0;
 decayptr<=24;
 susptr<=32;
 busy<=0;
 counter<=0;
 counter_temp<=0;
 if (start)
 begin
 busy<=1;
 state<=attack;
 end
 else state<=state;
 end

 69

 default: state<= idle;
endcase

end// always

endmodule

ADSRFLUTE.V
// sets the evelope shape for the flute
module ADSRflute(clk, reset, inter_output, endtime, start, busy,
enable, result);

input start, enable, reset, clk, endtime;
input[7:0] inter_output;

output busy;
output[7:0] result;

reg[6:0] atkptr, decayptr;
reg[14:0] counter;
reg[8:0] counter_temp;
reg[2:0] state;
reg[6:0] addressrom;
reg busy;
wire[7:0] q1;
wire[7:0] q2;
wire[15:0] resultmult;

parameter attack=1;
parameter decay=2;
parameter idle=0;

assign q2 = inter_output;
assign result = resultmult[15:8]; // we select highest bits of the
//result after multiplication

fluteROM myfluterom (addressrom, q1); // multiplication is signed
flutemult myflutemult (q1, q2, resultmult);

always @ (posedge clk)
 begin
 if (reset)
 begin
 state<=idle;
 end
 else case (state)
 attack:
 begin
 addressrom<=atkptr;
 if (endtime)
 begin
 busy<=0;
 state<=idle;
 end

 70

 if (enable)
 begin
 if (counter == 6981)
 //if (counter == 30)
 begin
 counter<=0;
 counter_temp<=0;
 atkptr<=0;
 state<=decay;
 end
 else if (counter_temp == 109)
 //else if (counter_temp == 5)
 begin
 counter_temp<=0;
 counter<=counter+1;
 atkptr <= atkptr+1;
 state <= state;
 end
 else
 begin

 counter_temp<=counter_temp+1;
 counter<=counter+1;
 state<=state;
 end
 end
 end
 decay:
 begin
 addressrom<=decayptr;
 if (endtime)
 begin
 counter<=0;
 counter_temp <=0;
 state <= idle;
 end
 else if (enable)
 begin
 if (decayptr==92) // decayptr
//keeps looping, giving the flute its fluttering sound
 begin
 decayptr<=35;
 state<=state;
 end
 else if (counter_temp == 109)
 //else if (counter_temp == 5)
 begin
 decayptr<=decayptr+1;
 counter_temp<=0;
 end
 else
 begin
 counter_temp<=counter_temp+1;
 state<=state;
 end
 end // elseif enable
 end // begin

 71

 idle:
 begin
 atkptr<=0;
 decayptr<=64;
 busy<=0;
 counter<=0;
 counter_temp<=0;
 if (start) // at the start signal, begin
 begin
 busy<=1;
 state<=attack;
 end
 else state<=state;
 end
 endcase
 end// always

endmodule

ADSRVIOLIN.V

// this module follows the model of the piano ADSR
module ADSRviolin(clk, reset, inter_output, endtime, start, busy,
enable, result);

input start, enable, reset, clk, endtime;
input[7:0] inter_output;

output busy;
output[7:0] result;

reg[6:0] atkptr, susptr;
reg[14:0] counter;
reg[8:0] counter_temp;
reg[1:0] state;
reg[6:0] addressrom;
reg busy;
wire[7:0] q1;
wire[7:0] q2;
wire[15:0] resultmult;

parameter attack=1;
parameter sustain=2;
parameter idle=0;

assign q2 = inter_output;
assign result = resultmult[15:8];

violinROM myviolinrom (addressrom, q1); // q1 is signed
violinmult myviolinmult (q1, q2, resultmult);

always @ (posedge clk)
begin
 if (reset)
 begin

 72

 state<=idle;
 end
 else case (state)
 attack:
 begin
 addressrom<=atkptr;
 if (endtime) // if finished, then go to idle state
 begin
 counter<=0;
 counter_temp <=0;
 state <= idle;
 end
 else if (enable)
 begin
 if (counter == 2618) // set counter value to
switch states
 //if (counter == 30) debugging
 begin
 counter<=0;
 counter_temp<=0;
 atkptr<=0;
 state<=sustain;
 end
 else if (counter_temp == 109)//increments ptrs
 // else if (counter_temp == 5)
 begin
 counter_temp<=0;
 counter<=counter+1;
 atkptr <= atkptr+1;
 state <= state;
 end
 else
 begin
 counter_temp<=counter_temp+1;
 counter<=counter+1;
 state<=state;
 end
 end // enable
 end // attack
 sustain:
 begin
 addressrom<=susptr;
 if (endtime)
 begin
 counter<=0;
 counter_temp <=0;
 state <= idle;
 end
 else if (enable)
 begin
 if (susptr==127) // keeps looping
//in the sustain region until entime signal is obtained
 begin
 susptr<=24;
 counter<=0;
 counter_temp<=0;
 state<=state;

 73

 end
 //else if (counter_temp == 109)
 else if (counter_temp == 5)
 begin
 counter_temp<=0;
 susptr<=susptr+1;
 end
 else
 begin

 counter_temp<=counter_temp+1;
 state<=state;
 end
 end //elseif enable
 end // sustain
 idle:
 begin
 atkptr<=0;
 susptr<=24;
 busy<=0;
 counter<=0;
 counter_temp<=0;
 if (start)
 begin
 busy<=1;
 state<=attack;
 end
 else state<=state;
 end
 default: state<= idle;
endcase

end// always

endmodule

// This module controls the volume for the flute. The other two modules
// controlling the volume for the piano and the violin remain
//uncommented because they follow exact the same patter
module soundcontrol_flute (clk, reset, volup, voldown, in, out);

input clk, reset, volup, voldown;
input[7:0] in;

output[11:0] out;
wire[11:0] volumeup1, volumeup2, volumedown1, volumedown2;
reg [2:0] remainder_a, remainder_b, remainder_c, remainder_d;
reg[2:0] count;

wire[11:0] out_temp;
wire[12:0] product1, product3, product4;

// these dividers and multipliers provide the right fraction by which
to multiply
soundcontrol_divider volup1flute (product1, 7, volumeup1, remainder_a);
soundmult multvolup1flute (in, 8, product1);

 74

soundcontrol_divider voldown1flute (product3, 4, volumedown1,
remainder_c);
soundmult multvoldown1flute (in, 3, product3);

soundcontrol_divider voldown2flute (product4, 4, volumedown2,
remainder_d);
soundmult multvoldown2flute (in, 2, product4);

// this out temp checks which count value has been obtained, therefore
//choosing the right output of the multiplication for its output
assign out_temp = (count==2) ? in :
 ((count==3) ? volumeup1 :
 ((count==1) ? volumedown1 :
 ((count==0) ? volumedown2 : out_temp)));

assign out = out_temp;

// this clocked block keeps track of the number of button presses, and
//assigns the count value which determines whether the volume is going
//up or down.
always @ (posedge clk)
begin
 if (reset)
 count<=2;
 else if (volup)
 if (count == 3)
 count<=count;
 else count<=count+1;
 else if (voldown)
 begin
 if (count == 0)
 count<=count;
 else
 count<=count-1;
 end
else
 count<=count;
end

endmodule

module soundcontrol_piano (clk, reset, volup, voldown, in, out);

input clk, reset, volup, voldown;
input[7:0] in;

output[11:0] out;
wire[11:0] volumeup1, volumeup2, volumedown1, volumedown2;
reg [2:0] remainder_a, remainder_b, remainder_c, remainder_d;
reg[2:0] count;

 75

wire[11:0] out_temp;
wire[12:0] product1, product3, product4;

soundcontrol_divider volup1 (product1, 7, volumeup1, remainder_a);
soundmult multvolup1 (in, 8, product1);

soundcontrol_divider voldown1 (product3, 4, volumedown1, remainder_c);
soundmult multvoldown3 (in, 3, product3);

soundcontrol_divider voldown2 (product4, 4, volumedown2, remainder_d);
soundmult mult (in, 2, product4);

assign out_temp = (count==2) ? in :
 ((count==3) ? volumeup1 :
 ((count==1) ?
volumedown1 :

 ((count==0) ? volumedown2 : out_temp)));

assign out = out_temp;

always @ (posedge clk)
begin
 if (reset)
 count<=2;
 else if (volup)
 if (count == 3)
 count<=count;
 else count<=count+1;
 else if (voldown)
 begin
 if (count == 0)
 count<=count;
 else
 count<=count-1;
 end
else
 count<=count;
end

endmodule

module soundcontrol_violin (clk, reset, volup, voldown, in, out);

input clk, reset, volup, voldown;
input[7:0] in;

output[11:0] out;
wire[11:0] volumeup1, volumedown1, volumedown2;
reg [2:0] remainder_a, remainder_b, remainder_c, remainder_d;
reg[2:0] count;

wire[11:0] out_temp;

 76

wire[12:0] product1, product3, product4;

soundcontrol_divider volup1viol (product1, 7, volumeup1, remainder_a);
soundmult multvolup1viol (in, 8, product1);

soundcontrol_divider voldown1viol (product3, 4, volumedown1,
remainder_c);
soundmult multvoldown1viol (in, 3, product3);

soundcontrol_divider voldown2viol (product4, 4, volumedown2,
remainder_d);
soundmult multvoldown2viol (in, 2, product4);

assign out_temp = (count==2) ? in :
 ((count==3) ? volumeup1 :
 ((count==1) ?
volumedown1 :

 ((count==0) ? volumedown2 : out_temp)));

assign out = out_temp;

always @ (posedge clk)
begin
 if (reset)
 count<=2;
 else if (volup)
 if (count == 3)
 count<=count;
 else count<=count+1;
 else if (voldown)
 begin
 if (count == 0)
 count<=count;
 else
 count<=count-1;
 end
else
 count<=count;
end

endmodule

// This was just a test module for integration. An approximate copy of
//this module appreas in midi_synth.v

module ADSRoutputs(clk, reset, busypiano, busyflute, busyviolin,
in_piano, in_flute, in_violin,
enablea, enableb, enablec, endtimea, endtimeb, endtimec, starta,
startb, startc, out, volcontrol, volup, voldown);

input clk, reset, enablea, enableb, enablec, endtimea, endtimeb,
endtimec, starta, startb, startc;
input[7:0] in_piano, in_flute, in_flute;

 77

output busypiano, busyflute, busyviolin;
output[7:0] out;
wire inter_output_a, inter_output_b, inter_outer_c;
reg[8:0] result_temp;

// this part changes the output levels from 0-255 to -128-128. converts
//to 2’s complement
assign inter_output_a = {~in_piano[7], {~in_piano[7], in_piano[7:1] -
7'b1000000 } };
assign inter_output_b = {~in_flute[7], {~in_piano[7], in_piano[7:1] -
7'b1000000 } };
assign inter_output_c = {~in_violin[7], {~in_violin[7], in_violin[7:1]
- 7'b1000000 } };

// this part passes everything through the adsr
adsrpiano mypiano(clk, reset, inter_output_a, endtimea, starta,
busypiano, enablea, result_a);
adsrflute myflute(clk, reset, inter_output_b, endtimeb, startb,
busyflute, enableb, result_b);
adsrviolin myviolin(clk, reset, inter_output_c, endtimec, startc,
busyviolin, enablec, result_c);

wire[11:0] pianovol, flutevol, violinvol;
input[1:0] volcontrol;

input volup, voldown;
button volumeup (clk, volup, volup_synch);
button volumedown (clk, voldown, voldown_synch);

// this part takes the adsr outputs and puts them through volume
//control
soundcontrol_piano spiano (clk, reset, volup_synch, voldown_synch,
result_a, pianovol);
soundcontrol_violin sviolin (clk, reset, volup_synch, voldown_synch,
result_c, violinvol);
soundcontrol_flute sflute (clk, reset, volup_synch, voldown_synch,
result_b, flutevol);

// if the volume control switch is up, then the controlled signals are
// obtained. If not, then the regular signals are obtained

assign result_temp = (volcontrol) ?
 pianovol[10:3]+ violinvol[11:4]+flutevol[11:4] :
 result_a + result_b + result_c;

assign out = {~result_temp[8], result_temp[7:1]};

endmodule

Waveform .mif files:

 78

// This .mif file is for violin only. In order to save space, I
//(Valerie) did not include the other .mif files. If this is really
//crucial, I can attach them separately. Thank you.

WIDTH=8;
DEPTH=256;

ADDRESS_RADIX = HEX; % Address and data radixes are optional, default
is hex %
DATA_RADIX = DEC;

CONTENT BEGIN
00: 128;
01:147;
02:165;
03:183;
04:199;
05:213;
06:226;
07:236;
08:245;
09:250;
0A:254;
0B:255;
0C:255;
0D:254;
0E:251;
0F:247;
10:238;
11:233;
12:229;
13:225;
14:221;
15:218;
16:215;
17:213;
18:210;
19:209;
1A:206;
1B:204;
1C:202;
1D:198;
1E:194;
1F:190;

20:184;
21:178;
22:172;
23:165;
24:158;
25:151;
26:144;
27:138;
28:133;
29:129;
2A:126;
2B:124;
2C:124;
2D:125;
2E:127;
2F:131;
30:135;
31:140;
32:145;
33:150;
34:154;
35:158;
36:161;
37:162;
38:163;
39:161;
3A:159;
3B:155;
3C:150;
3D:144;
3E:137;
3F:129;

40:122;
41:115;
42:109;
43:103;
44:99;
45:96;
46:94;
47:93;
48:95;
49:97;
4A:100;
4B:105;
4C:109;
4D:114;
4E:119;
4F:124;
50:127;
51:130;
52:132;
53:132;
54:131;
55:129;
56:125;
57:120;
58:114;
59:108;
5A:101;
5B:94;
5C:87;
5D:80;
5E:74;
5F:68;

60:63;
61:59;
62:56;
63:53;
64:50;
65:48;
66:46;
67:44;
68:42;
69:40;
6A:37;
6B:33;
6C:29;

6D:25;
6E:20;
6F:15;
70:11;
71:6;
72:3;
73:1;
74:0;
75:1;
76:4;
77:9;
78:16;
79:26;

7A:37;
7B:51;
7C:67;
7D:84;
7E:102;
7F:120;
80:139;
81:158;
82:176;
83:193;
84:208;
85:221;
86:232;

 79

87:242;
88:248;
89:253;
8A:255;
8B:255;
8C:255;
8D:252;
8F:249;
90:245;
91:240;
92:235;
93:231;
94:226;
95:222;
96:219;
97:216;
98:213;
99:211;
9A:209;
9B:207;
9C:205;
9D:203;
9E:200;
9F:196;
A0:192;
A1:187;
A2:181;
A3:174;
A4:168;
A5:161;
A6:154;
A7:147;
A8:141;
A9:135;
AA:130;
AB:127;
AC:125;
AD:124;
AE:125;
AF:126;
B0:129;
B1:133;
B2:138;
B3:143;
B4:148;
B5:152;
B6:156;
B7:160;
B8:162;
B9:163;
BA:162;
BB:160;
BC:157;
BD:152;
BE:146;
BF:140;
C0:132;

C1:125;
C2:118;
C3:111;
C4:105;
C5:100;
C6:97;
C7:94;
C8:93;
C9:94;
CA:96;
CB:99;
CC:103;
CD:107;
CE:112;
CF:117;
D0:122;
D1:126;
D2:129;
D3:131;
D4:132;
D5:131;
D6:130;
D7:126;
D8:122;
D9:117;
DA:111;
DB:104;
DC:97;
DD:90;
DE:83;
DF:77;
E0:71;
E1:65;
E2:61;
E3:57;
E4:54;
E5: 51;
E6: 49;
E7: 47;
E8: 45;
E9: 43;
EA: 41;
EB: 38;
EC: 35;
ED: 31;
EE: 26;
EF: 22;
F0: 17;
F1: 12;
F2: 8;
F3: 4;
F4: 2;
F5: 0;
F6: 0;
F7: 2;
F8: 7;
F9: 13;

FA: 21;
FB: 32;
FC: 45;
FD: 60;
FE: 77;
FF: 94;

end;

	Multi-timbral Sound Module
	Table of Figures
	1. Introduction
	Font-End Input Control and Decoder(by Susan Hwang)
	2.1 Decoder
	2.11 Keyinterface
	2.12 Keydecoder
	2.13 Realplay
	2.14. Record
	2.15. Blank
	2.16. Masterunit
	2.17. Frontend

	2.2 Testing and Debugging

	3. Instruments and Interpolation (Chris Sheehan)
	3.1 Interpolation
	3.2 Instrument Module Implementations
	3.21 Instrument

	3.22 Note Lookup Table
	3.23 Interpolator FSM
	3.24 Sample ROM
	3.25 Interpolator Calculator
	3.26 Divider
	3.27 DAC FSM

	3.3 Other Implementations
	3.31 Midi Synth
	3.32 Songs

	3.4 Testing and Debugging

	4. Shaping and Mixing of Sounds (by Valerie Gordeski)
	4.2 ADSR - Attack, Decay, Sustain, Release
	4.21 ADSR Piano
	4.22 ADSR Flute
	4.23 ADSR violin

	4.3 The Mixer and the Sound Control
	4.31 The Mixer
	4.31 The Volume Control

	4.4 Testing and Debugging

	5. Conclusion
	Appendix A : Susan Hwang’s Implementation
	Midi_synth.v
	Button.v
	Combiner.v
	Dac_fsm.v
	Divider.v
	Instrument.v
	Interp_calc.v
	Interp.fsm.v
	Manual_play.v
	Note_lookup.v

	Song MIF Files
	FurElise.mif
	SilentNight.mif

	Python Code
	ROM_generator.py
	# Makes a ROM of specified length and width containing
	# coefficients for a number of periods of a sine wave.
	import math
	depth = 256 # number of lines in the ROM
	width = 8 # width of ROM (in bits)
	periods = 2 # number of periods per ROM
	highest = int(math.pow(2, width))
	romfile = open('c://sineReg.mif','w')
	romfile.write('WIDTH = ' + str(highest) + ';\n')
	romfile.write('DEPTH = ' + str(depth) + ';\n')
	romfile.write('\n\n')
	romfile.write('ADDRESS_RADIX = DEC;\n')
	romfile.write('DATA_RADIX = DEC;\n\n')
	romfile.write('CONTENT BEGIN\n')
	for address in range(depth):
	num = address * (periods*2*math.pi)/depth
	result = math.sin(num)
	data = int(round(highest/2 * result + highest/2))
	line = '\t' + str(address) + '\t:\t' + str(data) + ';\n'
	romfile.write(line)
	print line
	romfile.write('\nEND;\n')
	romfile.close()
	Songwriter.py

