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Abstract 
 

 The multi-timbral sound module is a music synthesizer that is able to generate 
three different instrument sounds.  A user can choose to play a song from a keyboard 
using different voices (just by toggling a switch), to record a song from the keyboard 
entry and then to play it back, or to listen to two prerecording songs that use multiple 
instruments.  Susan Hwang was responsible for the front end: the keyboard entry, the 
keyboard write/read to and from the RAM, and for the decoding unit that produces the 
appropriate pitch and play signals to the instrument.  Chris Sheehan was responsible for 
creating the appropriate pitches using the inputs from Susan’s module through 
interpolation, and for the integration of the entire overall system.  Valerie Gordeski was 
responsible for taking the interpolated waveform and for shaping it to sound like the 
piano, violin and the flute, and to create a back-end mixer and volume control that would 
mix the digital waveforms and output the analog version of the result to the speaker.  The 
hardest part of the project was the integration of the entire system - when the project 
takes up several FPGAs it has to be tested separately in little pieces, and when it is put 
together and little things go wrong it is extremely hard to know right away what is not 
working. 
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1. Introduction 
 
The purpose of the multi-timbral sound module is to be able to play three different voices 
in a variety number of ways.  In particular, this project includes a violin, piano and flute.  
The project allows for two different modes of direction from the user: real play from the 
user on the keyboard and play from a bank of songs.  The keyboard real play only allows 
for playing from one instrument but the user may choose to play from 3 different 
instrument sounds.  The songs contain instructions for all 3 instruments and can create a 
polyphonic sound.  Table 1 is the overall diagram that shows the different modules that 
the sound module is composed of.   
 
There are three main components to the creation of the project:  the front end control, 
pitch modulation, envelope generation with volume control.  The first FPGA contains the 
overall control of the instruments complete with the keyboard, button and switch 
interfacing.  The front end module then passes the play and pitch signals to the 
interpolator.  The interpolator takes these values and samples the instrument wave stored 
in the ROM according to the pitch value.  This output is then passed on to the envelope 
generator which will shape the instrument waveform according to the instrument.  This 
will be passed to the speaker to be  
heard.

Figure 1:  Overall Block Diagram 
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2. Font-End Input Control and Decoder(by Susan Hwang) 

 
The purpose of this front-end module is to allow the user to control how the three 
instruments are played and act as a director.  The user can choose from two songs, play 
from the keyboard, record from the record and playback.  The front-end includes 
interfacing between external keyboard, switches, and buttons and the instruments.  It 
allows recording of keyboard presses into a ram, blanking of the RAM, real-time playing 
of the keyboard, and playing from stored song ROMs.     
 

 
Figure 1:  Overall Front-end Diagram 

  
The clock comes from the 1.8 mHz crystal clock and the reset, start (which starts the 
keyboard interface), start1 (which starts the song play), and blank are button presses.  
Songorkey (which selects whether user wants to play from a song or a key), record, songs 
and instrument are all switches.  Each instrument receives a play (1 bit) and pitch (5 bits) 
values from the output of the frontend module.  This will control the playing of each of 
the instruments.       
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2.1  Decoder 
 
2.11 Keyinterface 
The purpose of the keyboard interface is to change the serial output of the keyboard into 
an 8-bit key code signal.  The keyboard interface module takes in the keyboard clock, 
keyboard data, a reset, start, and outputs the corresponding 8-bit keyboard code and a 
ready signal that pulses high when all 8-bits of the keyboard code have been received.   

 
Figure 2:  Keyboard PS/2 Bus Timing Waveforms 

 
The keyinterface also has an additional embedded module called the lev2pulse module.  
Due to the nature of the kclk signal, the level to pulse module pulses on the negative edge 
of the kclk since the data is valid when the kclk is low.  Figure 2 shows the keyboard 
clock and data outputs and their relation to each other.  Therefore, the sample signal of 
the lev2pulse module will trigger the keyinterface to extract the data from the kdata 
signal.  Figure 3 shows the collecting of 8 data bits from the keyboard.  Ready is pulsed 
when all 8 bits have been collected. 
 

 
Figure 3:  Simulation of Key Interface 

 
The keyboard interface uses a simple two state finite state machine (FSM).  It transitions 
to S_INITIAL with the reset button press.  The S_INITIAL will transition to S_1 if 
sample goes high and the extracting of the data has started.  Table 1 shows the keyboard 
data sequence.  By the time it gets to S_1, the first bit has already been ignored.  It will 
stay in S_1, until it has reached the count of 10.  Meanwhile, the bits coming in will be 
stored to the corresponding 8-bit memory register.  It only stores bit 1-9 into the message 
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register and ignores the first and last 2 bits.  When the count 10 has been reached, S_1 
transitions to S_INITIAL to wait for the next sample and outputs the updated message 
register to the keydecoder as outmessage and pulses ready.   
 

1 2 3 4 5 6 7 8 9 10 11 
start DATA parity Stop 

Table 1:  Keyboard Data Sequence 
 
2.12  Keydecoder 
 
The keydecoder module takes the key message from the keyinterface and decodes it into 
the music format that the other modules can recognize.  The keydecoder also takes a 2-bit 
instrument signal which determines which instrument the messages are created for.  
There are two types of codes that are important to our music player: make code and break 
code.  Each key has a make code which is usually 8-bits long.  This indicates a that a key 
has been pressed.  The break code ‘F0’ followed by a key’s break code indicated that the 
key has been released.  Accurately detecting the make and break of a key is important 
because it determines the length a note is played.   
 

 
Figure 4: Simulation of Keydecoder 

 
The module has two essential registers:  previous and current.  When the outdata signal is 
received and when ready is pulsed high, outdata is decoded into pitch values which are 
stored in the current register.  Then current’s value is latched to previous register.  The 
decoded messages are outputted in two cases.  When the previous value is ‘F0’ in which 
case an outmessage of instrument turn off will be sent along with a pulsed ready2 and 
when the previous value is not ‘F0,’ an outmessage will be set to the instruction “play 
instrument with pitch set on current register” with a pulsed ready2  signal.  Figure 4 
shows a decoding of the outmessage taken from the output of the keyinterface.  Table 2 
shows how the key codes maps to the pitch codes and actual note values.  
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KEY CODE PITCH NOTE 
15 0 LOW A 
1E 1 A# 
1D 2 B 
24 3 C 
25 4 C# 
2D 5 D 
2E 6 D# 
2C 7 E 
35 8 F 
3D 9 F# 
3C 10 G 
3E 11 G# 
1A 12 A HIGH 
1B 13 A# 
22 14 B 
21 15 C 
2B 16 C# 
2A 17 D 
34 18 D# 
32 19 E 
31 20 F 
3B 21 F# 
3A 22 G 
42 23 G# 
F0 31 BREAK 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2:  The key-pitch-note values 
 
2.13  Realplay 
The realplay module takes the outmessage from the keydecoder module and parses the 
message into simple play and pitch values for the instruments.  The first top 2 bits are 
taken out first to determine which instrument is playing.  After it has determined which 
instrument is playing, the appropriate play1, play2, play3 are assigned from the 5th bit of 
the outmessage and the corresponding pitches are assigned from the 0-4 bits of 
outmessage.  Figure shows how the realplayer takes the messages and translates it into 
play and pitch values for the instruments.   
 

 
Figure 5:  Real play simulation 
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2.14.  Record 
 
The purpose of the record module is to record the keyboard presses into the record RAM 
with proper musical encoding.  The record module takes the outmessage of the 
keydecoder and stores that into the recordram.  In addition to just storing the messages of 
the keycoder, it determines the length between each message and stores that as a special 
pass message into the RAM.  The finished RAM is essentially identical to the form of the 
song ROMS complete with instrument instructions and pass length messages. 
 
The record module also included an imbedded recordcounter module.  The purpose of the 
recordcounter is to count how many “time-units” have passed between each message.  
This module takes in a clk, startcounter, stopcounter instructions from the record module 
and outputs a count.  The record module in itself contains another embedded module 
called msdivider.  This msdivider divides the 1.8mHz clock into 1/8 of a second.  
Therefore each count (bit increment) from the recordcounter means an increase of 1/8 of 
a second.  
   
The record module includes a six state FSM.  It transitions to S_INITIAL from a reset 
button press where the register values are initialized.  It will transition out of S_INITIAL 
to S_1 when the ready2 signal from keydecoder pulses high, indicating a new message is 
ready.  S_1 sets data and address of the recordram to the appropriate values while 
keeping we low.  This is setting up the ram for writing.  It transitions to S_2 at the next 
clock edge.  In S_2, we goes high and stores the data in the ram address location.  S_2 
also triggers the recordcounter to start counting by asserting startcounter high.  Then S_2 
transitions to S_3 at the next clock cycle.  S_3 is essentially a wait state for the next 
message to come.  When ready2 pulses high, S_3 can transition to S_4 where the record 
module gets ready to store the special pass time message.  S_4, the module stops the 
counter by asserting the stopcounter message.  The RAM data register is set to the count 
value and the address is set to the next address value.  At the next clock edge, S_4 
transitions to S_5 and the pass message is stored into the RAM.  At the next clock edge, 
S_4 transitions to S_6.  S_6 is essentially a buffer state that keeps the data and address 
valid to make sure the correct values are stored into the RAM.  At the next clock edge, 
S_6 transitions back to S_1 to store the next message.  Figure 6 shows the recording of 
various musicdata inputs from the keydecoder and how the recorder interacts with the 
recordram.   
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Figure 6:  Record Simulation 

 
2.15.  Blank 
 
The blank module blanks the recordram in case the user wants to reuse the ram to record 
something else.  The blank module takes an external button press to begin writing the 
RAM. 
 
The blank module has 4 states.  When the external blank button press is first asserted, the 
state is set to 0 and the busy signal immediately goes high, signaling to the top module 
that the blanker is now accessing the RAM.  S_0 is a buffer state to make sure the data 
and address have been steady for awhile.  S_1, the value of 0 is written to the RAM, S_2 
is another buffer state and in S_3, the address in incremented.  This cycle continues until 
the address has reached the end of the RAM in which case busy signal goes low.   
 

 
 
2.16.  Masterunit 
 
The masterunit is in charge of reading from the memory units and decoding the messages 
to control the three instruments.  The masterunit takes in a clock, reset, start, and songs as 
external controls.  The start tells the FSM to begin playing a song and the songs signal 
which is 2 bits long selects which memory unit to read from.  In our implementation, 
song0 is the recordRAM, song1 is Fur Elise and song2 is Silent Night.  
 
The masterunit has an embedded counter module that counts for a variable amount of 
time and signals to the masterunit when it has done counting with a pulsed change signal.  
The purpose of the counter is to tell when the masterunit can read from the next address 
in the memory units.  This could determine note lengths of pause lengths between notes. 
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Figure 7:  Simulation of Masterunit and memory units 

 
The masterunit has 5 states.  It first transitions to S_INITIAL with the reset press which 
initializes all the outputs and registers to 0.  In S_INITIAL, if an external start button is 
pressed, then the masterunit transitions to S_1 to begin reading the song.  S_1, the 
address for the memory unit is set and S_2 is the buffer state to hold the address steady.  
S_3 is when the message from the memory unit is decoded.  A case statement is used to 
determine which type of message or instrument is being described.  Any of ’01,10,11’ 
indicated that an instrument is being turned on or off so the corresponding play and pitch 
values should be correctly set.   All of the instrument instructions will automatically 
transition back to S_1.  A ‘00’ which is a time pass message means that the next 6 bits is 
the count value and the counter must be started.  Then the masterunit transitions to a 
special S_4.  In S_4, the masterunit waits for the change signal from count, indicating 
that the message in the next address can be read.  Figure 7 shows the simulation of 
playing from songrom1 which has the stored song Fur Elise.   
 
The following is the message encoding that the masterunit uses to interpret the messages 
stored in the memory units.  Each message is currently set at 8 bits long.  The 2 MSB 
encodes the type of instruction, the next 1 bit encodes play(on/off), the next 5 encodes the 
pitch.  However, a special instruction includes the pass message.  The pass message, 
instead of having play, pitch information has the time value information in 6 bits 
describing how long to wait before reading the next message.   
 
 

MSB (2) 00 01 10 11 
Type Pass Voice 1 Voice 2 Voice 3 

Table 4: Message Encoding  
 
  
There are two types of Messages:  Pass message and Instrument message. 
 
00 Time Value (6 bits) 

Table 5:  Pass Message Encoding 
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Type/Instrument(2) Note On/OFF(1) Pitch Value (5bits) 
01 (voice 1) 1 (on) 0 (lower C) 
01 0 (off) Nothing (ignored) 

Table 6:  Instrument Message Encoding 
 
2.17.  Frontend  
 
The front-end module is a collection of the instances of the other modules.  It interfaces 
between the external controls and the other modules.  It also a contains a mux that 
controls which module controls the instrument play and pitch outputs.  Depending on the 
value of songorkey the frontendcontrol selects either play and pitch signal from the 
masterunit or the realplay module.  It also chooses which module controls the recordram.  
Depending on the busy signal from the blank module, rec and songorkey, it chooses 
which we, address and data will access the RAM.    
 
2.2 Testing and Debugging 
 
The testing and debugging was difficult for this project due to its complexity and the 
abundance of modules.  However, there was a systemic method to testing the modules.  
After I finished coding each module, I compiled and caught the little syntax errors.  I then 
simulated to make sure the module was doing what it was suppose to.  I tested things very 
incrementally.  After finishing two modules, I would connect the modules together and 
simulate it to make sure they were compatible and the chain would continue.  An 
example of the steps I took was I first tested whether the keyboard worked.  I then 
implemented the keyinterface module and checked whether the HEX LEDs would 
change on the kit when there is a button press.  I then implemented keydecoder and 
connected and simulated keyinterface.  After I made sure this worked, I added on 
realplay, recorder and so on.  What was good about this testing is that I could make sure 
these parts worked incrementally.  Since Chris had an instrument that played a square 
wave early on, I could hear when my part was working and when it wasn’t working.  
 
Debugging has very difficult for this project.  It was that sometimes when instrument 
wasn’t playing, it was hard to tell if it was the frontend or the instrument that had bugs.  It 
is also hard to interface with other people’s projects.  For example, if the instruments are 
not configured correcting, the notes will sound off or it will not play altogether.  The 
debugging also got very complicated when all the modules were put together and there 
are a million signal to look at and debug.  Something that was also difficult was testing 
all three instruments.  Since only two instruments fit on one FPGA, we had to put an 
instrument with the front end control and bus the input and output signals.  Something 
very difficult is dealing with the keyboard.  The keyboard is old and often the 
connections are not so good so sometimes the keyboard will fail and it is hard to 
distinguish whether it is a logic failure or hardware failure.     
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3. Instruments and Interpolation (Chris Sheehan) 
The overall project was to create a sound module that can play songs from various inputs 
by sounding one or more unique instruments.  My role in the project was to create the 
actual digital instruments that create the sound.  While Susan worked on the front end of 
the system and Valerie worked on the backend digital signal processing, I worked on the 
“middle.”  My goal was to create a set of digital instruments that would take instructions 
from Susan’s module and output digital signals to Valerie’s module. 
 
The instruments were to be digital in nature, so they could not use any natural analog 
waveforms.  An obvious instrument design was to play a series of digital values stored in 
a ROM to recreate a waveform.  Hooking these signals to a digital-to-analog converter 
(DAC) would allow the sound to be played over an analog speaker. 
 
Each instrument had to be able to play many notes so that a variety of songs could be 
played.  There were a few possibilities of how to create instruments with several pitches.  
One would be to have separate ROMs storing sampled waveforms of the specific 
instruments playing specific notes.  This would unfortunately require a huge number of 
rather large ROMs, a memory requirement that is not conducive to FPGAs.  Another 
possibility would be to have fewer ROMs and achieve different pitches by skipping 
through the values in the ROMs.  If playing every value at a certain rate sounded an “A,” 
then playing every other value at the same rate would sound an “A” an octave higher.  To 
allow pitches between octaves to be played, the ROMs should be “oversampled,” 
meaning that there would be great detail in the ROM values.  By choosing every fifth or 
every sixth value in the ROM, for example, we could change the pitch slightly. 
 
I determined that both of these proposed possibilities would not work well with the 6.111 
lab kits because of the large memory requirement.  To solve this problem, I use a 
technique called interpolation to shift the pitch of the single sample to produce other 
pitches. 
 
3.1 Interpolation 
Interpolation shifts the pitch of the sample by accessing the ROM data at different rates.  
If the stored sample is a “C,” accessing it at twice the rate would produce a “C” an octave 
above, while accessing it at half the rate would produce a “C” an octave below.  The 
normal “C” would result from reading from the ROM and incrementing the address once 
every sample period.  The higher “C” would result form reading from the ROM and 
incrementing the address twice every sample period.  Thus, we can change the pitch by 
incrementing the ROM address at different rates, even though the sample period is 
constant. 
 
Changing the frequency by integer multiples is very easy, but this produces a range in 
notes that is too great for a conventional song.  For example, a “D” is two half-steps 
above a “C.”  A given half-step is one-twelfth of an octave, or 1.059 times faster than the 
note below it.  A “D” is (1.059)^2 times a “C” in frequency.  If the stored sample in 
ROM is a “C,” we need to increment the address 1.059^2 times every sample period. 
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The ROM clearly only allows integer address values, so the challenge is to interpret an 
address value like 1.059.  One method is to simply ignore the fractional part of the 
address value, but this produces a signal that is barely intelligible.  Another method, as 
seen in the top part of the figure below, is to choose only the nearest ROM address value.  
If the “virtual” ROM address is 4.589, the program will choose address 5. 
 
The third method is to use linear interpolation.  This method calculates the ROM value by 
taking a weighted average of the neighboring ROM values.  For example, if the virtual 
address is 3.4, the program will take 0.6 of the value at address 3, and 0.4 of the value at 
address 4.  See the bottom part of the figure for a pictorial representation of this. 
 
If ROM[x] is the value of the ROM at address x, F is the fractional part of the virtual 
ROM address, and I is the integer part, the output of interpolation is: 
 
 

]1[)(][)1(][ ++−=+ IROMFIROMIFIROM  
 
 

 
Figure 8 - Graphic of Interpolation 
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3.2 Instrument Module Implementations 
 
3.21 Instrument 
The instrument module is the core module of my part of the project.  It takes a play signal 
and note value signal, and produces a digital signal result.  The note value can be between 
0 and 24, with 0 representing an “A,” 24 representing an “A” two octaves higher, and the 
other numbers representing every half-note in between.  The module produces an 8-bit 
result. 
 
The instrument module is timed by an external source, giving it a start signal.  The start 
signal tells the instrument to calculate the next value of the digital signal for the 
instrument at the desired pitch.  When the instrument is simulated at the correct sampling 
rate, the stream of instrument results will produce the desired sound when run through the 
DAC.  The figure below depicts an overall block diagram of the instrument module. 

 
Figure 9 - Overall Block Diagram of Instrument Module 

 
As each start is asserted, the instrument should produce a new result value based on the 
values in the sample ROM and the note value.  Figure 10 shows the note value changing 
in simulation. 
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Figure 10 - Instrument Simulation Graphic 

 
3.22 Note Lookup Table 
The note value is converted to an increment parameter, which represents the value by 
which the low “A” frequency must be multiplied to produce the desired pitch.  If the note 
value is “1,” or a A#, the increment parameter will be 1.059, or one plus the twelfth root 
of two.  This number is represented as a two’s complement value with an integer and a 
fractional part. 
 
The left side of Figure 1 shows how the increment can be represented with an integer and 
a fractional part.  In my case, the increment has two integer bits and eight fractional bits. 
 
3.23 Interpolator FSM 
The instrument’s finite state machine (FSM) controls the reading from the sample ROM 
and feed values to the unit that actually interpolates.  It keeps track of a virtual address 
pointer that represents the address of the sample in ROM that we would like to 
interpolate the value of (e.g. ROM[1.34]). 
 
Every time the instrument acts, it increments the virtual address by the increment 
parameter.  It then retrieves the values in the sample ROM at integer addresses 
immediately above and below the virtual address (ROM[1] and ROM[2] in this case).  It 
passes these values to the interpolator unit, as well as the fractional part of the address 
(0.34 here).  This number is used to calculated the weighted average of the two ROM 
addresses to produce the interpolated value. 
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Figure 11 - Interpolator FSM Simulation Graphic 

 
In Figure 11, the interpolator FSM is simulated.  It fetches two data values from the 
ROM, val_a and val_b.  Here these are both the same value, 04.  Val_a comes from 
ROM[0] and val_b comes from ROM[1].  This is consistent with the increment value, 
080, which represents one-half.  Because the first virtual address will be 0 + ½ = ½, the 
first two address should be the one above (1) and the one below (0) the virtual address.  
The fractional part of the virtual address (80) is an output that will be past on to the 
interpolation calculator. 
 
3.24 Sample ROM 
The Sample ROMs themselves (*.mif files) were made by Valerie.  There are three 
ROMs, one each for the violin, piano, and flute.  The ROMs store the values of a 
complex waveform for each instrument.  The values are 8 bits wide, and the ROM has a 
length of 256.  Each ROM stores two full periods of the instrument, and when played at 
the fundamental sampling rate with no interpolation, the ROMs all store a 440 Hz “A” 
note. 
 
3.25 Interpolator Calculator 
The interpolator calculator (or just “interpolator”) performs the actual linear 
interpolation.  It takes the values from the lower and higher ROM address, as well as the 
fractional part of the virtual ROM address.  Again, if ROM[x] is the value of the ROM at 
address x, F is the fractional part of the virtual ROM address, and I is the integer part, the 
output of interpolation is: 
 
 

]1[)(][)1(][ ++−=+ IROMFIROMIFIROM  
 
The interpolator unit uses two simple multipliers to quickly compute this value. 
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In the simulation in Figure 12, the fraction is kept constant at one-half (H80).  The 
interpolator unit is simulated at various low_val and high_val outputs, and it shows that 
the result is indeed the arithmetic mean of the two inputs. 
 

 
Figure 12 - Interpolator Simulation Graphic 

3.26 Divider 
The divider module is external to the instruments, but it controls the timing of the 
instrument system.  As I mentioned before, each instrument’s sample ROM contains two 
waves in 256 samples.  This must be sampled at a rate that creates a 440 Hz “A.”  
Because the system.  It turns out that we need 558 samples per 1/100 second to create an 
“A” from the stored sample.  Because we are using a 1.8432 MHz system clock, the 
divider unit divides the clock by 33 to create the correct sampling signal. 
 
3.27 DAC FSM 
The DAC FSM (digital-to-analog converter finite state machine) effectively synchronizes 
the instruments in the system.  Each sampling period, it tells every instrument to fetch 
new interpolation values.  When the signals from each instrument are all ready, the DAC 
FSM enables the result of the system to be output to the DAC.  This unit deals with the 
start and busy signals from each instrument, and waits for each instrument to be ready 
with its values before changing the output to the DAC. 
 

 
Figure 13 - DAC FSM Simulation Graphic 
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In the simulation in Figure 6 it is clear that the DAC FSM waits for all three instrument 
busy signals to go low before continuing to state 0, where it will output the result to the 
DAC (bring dabar low). 
 
3.3 Other Implementations 
In addition to instrument-related modules, I implemented a few other parts of the project.  
One was the top-level module for my FPGA.  The other was a couple of song ROMs to 
drive part of Susan’s control module. 
 
3.31 Midi Synth 
This top level module integrates the instruments, ADSRs (Valerie’s back end modules), 
and Valerie’s volume control unit.  It includes a divider and DAC FSM to control the 
timing and synchronization of instruments. 
 
Originally, we wanted to divide the project onto two FPGAs: one to have all of the 
control signals and user inputs, another to house the instruments and back end processing.  
Unfortunately, the many ROMs in our project did not allow all three instruments and 
ADSRs to be stored on one FPGA.  Thus, this top level module included two instruments 
and ADSRs internally, and had one instrument and ADSR external. 
 
The module receives control signals from Susan’s controller FPGA and gives play and 
pitch signals to the two internal instruments.  It also receives the digital signal output 
from the external instrument, which is stored on Susan’s FPGA.  This instrument’s pitch 
and play signals are all controlled within Susan’s FPGA, but the instrument interacts with 
the DAC FSM on my ROM through the start, busy, and sample signals. 
 
All of the signals between the FPGAs are bussed through a 50-pin cable connecting the 
boards of each unit. 
 
3.32 Songs 
One of the features of the sound module is to play pre-stored songs from internal ROMs.  
Although it was Susan’s part of the project to read through the ROMs and interpret the 
instructions, I programmed the songs into the *.mif format. 
 
The two songs are Fur Elise and Silent Night (‘tis the season!).  I found sheet music for 
the songs online, at http://www.8notes.com. 
 
For Fur Elise (see Figure 14), I programmed nine measures of the song into a ROM.  The 
treble clef was programmed as the violin, and the bass clef was the piano.  For Silent 
Night (see Figure 15), I programmed the entire twelve-measure song.  The violin part was 
programmed as the violin, and the piano part was split into a two-part harmony between 
the piano and the flute.  I had to transpose some of the notes differently then they were 
written because of the limited number of notes on the sound module.  There were also too 
many notes on the sheet music to program using only three separate instruments. 
 
 

http://www.8notes.com/
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Figure 14 - Fur Elise Sheet Music 
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Figure 15 - Silent Night Sheet Music 
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In the interest of time, I first converted the sheet music into human-readable pseudo-code.  
The first measure of Fur Elise, for example, looked like: 
 

---1 
p1 
1o19 
p1 
off1 
1o18 
p1 
off1 

 
The ---1 is simply a comment indicating the beginning of measure 1.  This was useful for 
finding mistakes in the code.  The first instruction “p1” is a pause for 1 period.  “1o19” 
means turn instrument 1 (the violin) on and play pitch 19.  Pitch 19 corresponds to a high 
E, as one can see from the sheet music.  Then there is another pause, and “off1” tells the 
sound module to turn off the instrument.  The entire piece continues like this until the 
end, and other instruments can be added with messages like “2o19” or “off2.” 
 
The next step was to convert the songs to a *.mif file that could be read in Verilog to 
initialize a ROM with the proper songs.  All of the song ROM files were 256 addresses in 
length (Silent Night barely fit).  To convert this pseudo-code into actual instructions, I 
wrote a Python script to process the text files.  See the Appendix for the code.  After run 
through the script, the first measure of Fur Elise looks like: 
 
 0 : 1; 
 1 : 115; 
 2 : 1; 
 3 : 64; 
 4 : 114; 
 5 : 1; 
 6 : 64; 
 
These instructions can be read by Susan’s control unit to drive the instruments and 
produce the songs.  Because the keyboard does not allow multiple instruments to play at 
the same time, the song ROMs enable creation of polyphonic sounds. 
 
3.4 Testing and Debugging 
Our group was careful to design the project so that it could be implemented in modular, 
incremental stages.  When each module or each incremental implementation was 
finished, we would test thoroughly. 
 
I found that testing by simulation was often not enough to ensure successful functionality.  
At different design stages, I would program the FPGA with a module that would allow 
me to test my code in hardware.  This reduced the number of surprises later when I 
assembled the project and programmed the FPGA. 
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I also designed as many modules as possible so they could be extended, much as Java has 
classes and inheritance.  For example, instead of creating three separate piano, violin, and 
flute modules, I designed a single, generic “instrument” module.  I tested this module 
thoroughly with a simple sine wave ROM before adding in the more complicated sample 
ROMs. 
 
My technique for debugging the overall system and assembling the modules was to 
incrementally add functionality and test the system.  I would gradually convert dummy 
modules into real functional ones and catch errors along the way.  If a module did not 
work correctly, I would create a new top level module whose only purpose was to test 
this module.  I actually had three or four top level modules that I could separately 
program to test individual features. 
 
Once in hardware, I would use the LEDs liberally to indicate correct inputs and outputs.  
I would also be extra careful when wiring to not introduce time-consuming stupid 
mistakes. 
 
Debugging our project was challenging because many of the aspects of the system could 
not be easily tested in software simulation.  The sounds of the instruments consisted of 
hundreds of digital values being output from the DAC at a very fast rate.  MAX+Plus II 
could not simulate the actual output waveform.  Tweaking the parameters of the 
instruments and the ADSRs required often recompilation and reprogramming, which took 
a lot of time. 
 
4. Shaping and Mixing of Sounds (by Valerie Gordeski) 

 
4.1 Different Harmonics 
 
There is an infinite complexity to the way different instrument produce sounds.  Physics 
have long studied why a Stradivarius violin sounds like it does - and tried to reproduce 
the exact warm and richness of sound on the violin copies.   Every note that is played by 
any instrument has a certain quality depending not only on its fundamental frequency 
(440 Hz of an A for example), but also on the combinations of the different harmonics 
that it has.  A harmonic is a higher frequency wave that is a multiple integer amount 
times the fundamental frequency of the pitch (for example, 440*2 is 880, therefore 880 
Hz is a harmonic of A).  All high quality instruments have multitude of higher harmonics 
that do not only differ in frequency, but also in their phase from the fundamental.  By 
combining the fundamental frequency and its harmonics, it is possible to obtain a sound 
that sounds somewhat like an instrument you are looking for. 
 
To figure out the harmonic content for the three instruments that our team has chosen to 
replicate - the violin, the piano, and the flute - I have spent a lot of time on the internet 
trying to find papers and sites relating to this subject. I was able to find the relation 
between the fundamental frequency and the 5 harmonics for a piano, including the phase 
difference between them.  However, for the flute and the violin I was only able to find the 
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coefficients of their harmonic, therefore when I created the waveforms they did not have 
any phase information in them.  These waveforms are stored in a ROM, with two periods 
and 256 coefficients (128 coefficients per cycle. Please refer to the memory initialization 
files given in the Appendix C for the exact values of the coefficients. 
 
4.2 ADSR - Attack, Decay, Sustain, Release 

 
Fig. 16 The typical envelope shape of a piano (from 

http://www.teachnet.ie/amhiggins/lesson6.html#) 

 
The most important characteristic and distinguishes the hammer-striking sound of a piano 
and a warm blowing of a flute is the shape of the note envelope.  Aside from vibrating at 
a certain frequency, the amplitude of the note changes over time to give it the sound we 
are used to hearing.  The manner in which every envelope is described is called ADSR - 
or Advance, Decay, Sustain, and Release.  These terms describe very well the basic shape 
of a piano envelope (see Fig. 16) 
 
The piano has a really sharp ‘attack’ stage, with the peak value corresponding to the 
impact of a little hammer in the piano striking the string.  After the loud initial vibration, 
the string quickly decays (therefore, the decay stage) to a fairly level value, after which 
the sound stays somewhat level (hence the name ‘sustain’).  During the release part, the 
sound quickly decays to zero.  The flute, being a wind instrument without striking or 
plucking, has a more rounded envelope shape: it has a gradual increase until a certain 
peak value, and after that a decrease to zero, without a sharp attack/decay boundary.  If 
the flute sound is sustained, the sound oscillates in volume and its envelope looks like a 
sinusoid.  By researching different instruments, and figuring out how their envelopes 
differ, our group came up with three instruments that we can shape: the piano, the violin 
and the flute.  These instruments have enough differences in their envelopes that even 
with the imperfect lab tools the listener will be able to distinguish between different 
instrument sounds. 
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4.21 ADSR Piano 
 

The first module that I have created is the ADSRpiano module.  This serves as a 
template for all the other instruments, although each instrument differs from the next 
because of the different envelopes.  With the current encoding scheme, the ADSR is only 
given the information of when to start and to stop a signal, a clock, a reset button, an 
enable signal (that serves as a counter) and a waveform.  It then modifies the waveform 
to produce a sound wave with amplitude emulating an actual piano sound (please refer to 
Fig.17). 

Fig. 17 The block diagram for a Piano ADSR  
 
The way this modification is achieved is through a larger FSM, that controls a multiplier 
and a ROM with all the ADSR coefficients.  The coefficients were first created in 
Matlab, and then converted into a .mif file.  There are three pointers that keep track of the 
ROM address - atkptr (attack pointer), decayptr (decay pointer) and the susptr (sustain 
pointer).  Originally, the ADSR was configured for a dynamic envelope shaping - given 
the shape of the note, it would have calculated the duration of the attack, decay, and 
sustain periods, and if the note was shorter than expected, it would have jumped to the 
respective pointers.  However, our simple encoding scheme only allowed to receive a 
start and an endtime.  Therefore, the piano stayed in the sustained region by moving the 
susptr backwards until the ‘endtime’ signal was given. 
 
The FSM that controls the  ADSR has four states: attack, decay, sustain, and idle (please 
see Figure 18 for the state transition diagram).  With a reset signal, the FSM enters the 
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idle state.  The counter is set to zero, and the program is waiting for a start signal.  With 
the start signal, the FSM moves into an ‘attack’ phase, by setting the rom address to be 
the atkptr.  After that, the counter_temp counts every 109 enables and increments the 
pointer when it is done, while counter counts to 2618 to know when to reset the count to 
zero and to move to the next state.  In all states, if ‘endtime’ signal is pressed, the FSM 
enters the idle state, and returns addressrom (pointer that keeps track of the ROM 
address) to 0 and all the pointers to their appropriate values. 

 

Figure 18.  The state transition diagram for the piano module. 

State Idle
akptr = changing
decayptr = 24
susptr = 32
busy = 0

State Attack State Decay

akptr = changing
decayptr = 24
susptr = 32
busy = 1

counter =
akptr = 0
decayptr = changing
susptr = 32
busy = 1

State Sustain
akptr = 0
decayptr = 24
susptr = changing
busy = 1

start

endtime

counter =

8722618

 

Figure 19.  ADSR coefficients stored in the ROM 
The shape of the e re 19.  As stated 

.22 ADSR Flute 

nlike the piano, the flute has a very slow attack, and a very gradual decay.  It doesn’t 
d 

nvelope that is stored in the ROM is illustrated in Figu
previously, the release part of the waveform is missing because the instrument never 
knows when to stop until it actually receives the stop signal.  Therefore, it just keeps 
looping in the sustain region in order to keep the sound going.  
 
4
 
U
really have a sustain mode - when the flute is sustained, you hear a sinusoid increase an
decrease in aplitude, creating a wavering sound.  Figure 20 illustrates the shape of the 
flute envelope. 
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Figure 20.  ADSR coefficients for the flute 

 
The block diagram and the state transition diagram of the flute is very similar to the block 
diagram of the ADSRpiano module.  It takes in the same inputs: the clock, the reset, the 
start, the end, the product of the interpolator, and produces the busy signal (for 
debugging) and an 8-bit result.  Inside you will find a similar envelope ROM that stores 
the coefficients, and the multiplier.  The multiplier takes in the coefficients from the 
ROM via the addressptr, and multiplies them by the waveform supplied by the 
interpolator.   
 
Since there is no sustain, the ADSR flute has only three states: an attack state, a decay 
state, and an idle state. At any time it can leave those states if an end signal has been 
received - it then returns all the points to their default values and waits for another start 
signal.  If, however, the end signal is not reached even after all the envelope ROM 
coefficients have been used, the decayptr will  keep looping around in the high symmetric 
part of the coefficients (approximately from 20 to 109), to create a sinusoid-like wavering 
sound one might hear when an actual flute is sustained.   
 
4.23 ADSR violin 
 
The violin sounds different from both the flute and the piano.  The key difference 
between these instrument is the way they sustain their notes : in the piano, after the 
hammer strikes the string the sound vibrations die away, therefore there is a gradual 
decay in the envelope.  With the flute, there is the sinusoid fluttering that was described 
in the above section.  With the violin, for as long as the violinist holds the bow to the 
string, the violin will play without any change in volume (unless of course the violinist 
wants it to change the volume).  Therefore, after the sharp attack phase, in the envelope 
of the violin there is a long sustain period.  I thought that the best way to represent this is 
just to keep the coefficients in the ADSR ROM constant. 
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Figure 21.  The ADSR envelope shape of the violin 
 

The block diagram and the state transition diagram is again very similar to the piano 
(please refer to Figure 17).  The inputs are the same, and the ROM is the same length.  
Perhaps a way to optimizer the storage would be just to have one address with the 
constant coefficient through which I would loop, but I kept all the ROMs having the same 
format.  There are three states in this FSM: the attack, sustain, and idle.  The default state 
is the idle state: this is where the module waits for the input.  As soon as it receives the 
start signal, it goes to the attack phase, and begins its multiplication.  As before, 
counter_temp and counter registers keep track of when to increment the address pointer 
and when to change state, respectively.  These registers are incremented at every ‘enable’ 
signal. 
 
4.3 The Mixer and the Sound Control 
 
After the outputs come out of the ADSR, it is necessary to add them appropriately.  
Originally, the waveform that went into ADSR was all positive, and so the multiplication 
done in the ADSR was unsigned.  With addition of thee instruments at the same time, a 
different strategy has to be used. 
 
4.31 The Mixer 
 
Since all the coefficients for the actual instrument waveforms with all of their harmonics 
range from 0-255 (all positive), they have to be converted to the range from -128 to 128; 
and be put into the 2’s complement format.  Then, the type of multiplication in the ADSR 
modules was changed to signed multiplication.  Now, when the digital waveform comes 
out from the ADSR it is centered appropriately around 0.  The waveforms can then be 
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added through a simple addition; or they can be passed through the sound controller first 
and then be added. 
The code for this very simple mixer resides in the top level module midi_synth.v, found 
with Chris Sheehan’s code. 
 
4.31 The Volume Control 
 
The volume control module takes in clock, reset, volup, voldown, and an input from the 
ADSR.  It produces a 12 bit output, which is a result of the appropriate scaling of the 
sound. 
 
The block diagram for the sound control can be found below.  In order to multiply the 
sound by a certain fraction, you need to first mutiply it and then to divide it.  This module 
doesn’t have an FSM, it uses a mix of blocking and nonblocking assignments to produce 
the appropriate output.  The counter in this module keeps track of whether we are 
increasing or decreasing in volume.  The default value for the counter is 2 - this means 
that the sound is in the ‘normal’ state.  There are two volume down settings - when the 
user presses the voldown button once, the sound goes down, and then down more.  After 
that, the number of presses doesn’t change, and the counter remains at 0.  Now if the user 
presses the volume up button, the counter will increment, and the sound will increase 
accordingly.  This simple scheme for the sound control has been replicated for all thee 
instruments.  

 
Figure 22.  The Volume Control Module. 

 
When this module was integrated with the ADSRs, there was also a volume switch 
implemented.  With the volume switch on, the FPGA sends the outputs through the 
volume  control first, and then reads them out and mixes them.  With the volume switch 
off, it takes the outputs directly from the ADSR, and then mixes them. 
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4.4 Testing and Debugging 
 
Majority of my testing and debugging happened through simulations.  In order to 

see if the ADSR was working properly and whether the states were changing the way I 
wanted them to, I changed the counter and counter_temp values to something much 
smaller, where I could see over several clock cycles that the address pointer was 
incrementing properly.  A sample time diagram from the violinADSR is shown below in 
Figure 23.  In this diagram, you can see the address pointers incrementing when they are 
supposed to, and the output incrementing at first during the attack phase (note that the 
attack pointer is changing value at this time) and the sustain pointer changing during the 
sustain state.  You can also see the result incrementing in during the attack phase, and 
then staying constant through the sustain part of the violin.  When I knew that all of my 
modules behaved in a logical fashion, we have tried to integrate them all.  Much to my 
surprise, all of the ADSRs worked as expected on the first try. 

 
Figure 23.  The timing diagram for violinADSR module 

 
The second thing I had to debug was the volume control module.  To do that, I first tested 
the sound module in simulation (see below).  As you can see, the output changes 
appropriately with each volume up and volume down button press.  On reset, the state 
counter switches to 2, which is the default value. With volumeup and volumedown 
presses, the output becomes scaled accordingly.   
 
The biggest issue I had with the volume control was during integration.  At first, I could 
not hear any changes in volume.  Because of the limitation of the 8-bit DAC, and the 
truncation of the output that had to happen, the range has to be chosen carefully to hear 
the changes.  Also, with the instrument such as the piano, only the attack part can be 
heard since after it decays past the certain value, the bits where the sound is happening 
are outside of our 8-bit DAC selection range (the sound control has a 12 bit output, and 
typically we select the highest 8 bits).  This issue could have been resolved by using a 12-
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bit DAC, but since we have already integrated the entire system, every control would 
have to have been changed, and at that point it was too late to do anything about it. 
I have also created  my own top level module called adsroutputs.v. in order to see if the 
sound module and the ADSRs can be put together without any compile errors.  After that, 
I put the sound control onto Chris’s FPGA and  tested it there, and the final code of the 
adsroutputs became integrated into Chris’s midi_synth.v top level module. 

 
 

Figure 24.  The timing simulation for the sound module. 
 
5. Conclusion 
Our group had many lessons to take away from this final project. 
 
First modularity is the key to success in a large project.  When there are ten or twenty or 
more separate modules, the system is too complex to effectively test and debug once all 
assembled.  By splitting the project into three main mini-projects (one for each person), 
and designing ways for each of the parts to be individually tested, we greatly simplified 
the design and implementation process.  Each group member was then able to further 
split up his or her part of the project into modules that were small enough to manage and 
test by themselves. 
 
We also learned that in a project with multiple team members, defining and keeping track 
of specification is critical.  Although each person was implementing the part on their 
own, it was important that each person understood the inputs and outputs the others 
expected.  This insured that the modules would work well together once assembled.  For 
example, Val was originally going to design her ADSR so it would take in a “begin note” 
and “duration” signal.  But Susan and I determined that note duration signals would be 
difficult to implement in our song encoding, so Val changed her specification so that only 
a “start note” and “end note” signal were required. 
 
It was also important but difficult for us to keep track of code versions and file 
hierarchies.  The Verilog code did not support the equivalence of inheritance in object-
oriented programming, but there still existed the concept of modules “having” other 
modules.  Our file structure could not really reflect this because everything was in the 
same folder.  Also, compilation produced many extra files that cluttered the file space.  In 
hindsight, we probably should have used a versioning system such as CVS. 
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In all, we learned to work together as a team.  Our victories and failures were ours 
together.  We learned to compromise on issues we disagreed on, and we helped each 
other through good and bad times during the life of the project.  
 
Given enough time, and enough effort, and enough FPGAs, anything is possible. 
 

 
Appendix A : Susan Hwang’s Implementation 
 
//FRONTEND CONTROL:  adds all the modules together and is the main  
//interface between the keyboard, clk, buttons and switches. this  
//module also acts as a controller that regulates the signals going  
//into the modules 
 
module frontendcontrol(clk,start,start1,reset,songorkey,rec,songs, 
instrument,kclk,kdata,play1,play2,pitch1,pitch2,outdata,blank,busy); 
 
input clk,reset,songorkey,rec,start,kclk,kdata,start1,blank; 
input [1:0] songs; 
input [1:0] instrument; 
 
output play1,play2,busy; 
output [4:0] pitch1,pitch2; 
output [7:0] outdata; 
 
wire play3; 
wire [4:0] pitch3; 
wire [1:0] songs; 
wire [7:0] outdata; 
wire [7:0] outmessage; 
wire play1r,play2r,play3r,play1m,play2m,play3m; 
wire [4:0] pitch1r,pitch2r,pitch3r,pitch1m,pitch2m,pitch3m; 
wire [7:0] qrom1,qrom2,qrom3,qram,addressROM,addressRAM,addressRAMm, 
addressRAMr,dataram, recdataram, ram_addr, ram_data;   
wire weram, ready, ready2, LED, weramr, weramm, we, busy;   
 
songrom1 SongROM1(addressROM,qrom1); 
songrom2 SongROM2(addressROM,qrom2); 
songrom3 SongROM3(addressROM,qrom3); 
recordram recordram(addressRAM,weram,dataram,qram); 
 
//blanks the ROM with blank press 
blanktherom blanktherom(clk, blank, busy, ram_addr, ram_data, we);  
 
keyinterface keyinterface(reset,start,kclk,kdata,clk,outdata,ready); 
keydecoder keydecoder(clk,instrument,outdata,ready,outmessage,ready2); 
 
realplay realplay(clk,outmessage,play1r,play2r,play3r,pitch1r,pitch2r, 
pitch3r); 
 
record record(clk,reset,outmessage,ready2,LED,addressRAMr,weramr, 
recdataram,count);   
 
masterunit masterunit(clk,reset,start1,songs,qrom1,qrom2,qrom3,qram, 
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play1m,play2m,play3m,pitch1m,pitch2m,pitch3m,addressROM,addressRAMm, 
weramm); 
 
//if you are blanking, use blank's we else if you are using keyboard  
//and recording, let record access we 
assign weram = busy? we: (!songorkey&&rec)?weramr:weramm;     
         
 
//if you are blanking, use blank's ram_addr,else if you are  
//added mux to choose between which data to use 
assign addressRAM =  
busy? ram_addr : (!songorkey&&rec)?addressRAMr:addressRAMm;   
             
//using keyboard and recording, let record access address 
assign dataram = busy? ram_data : recdataram;   
 
//these choose which play and pitch to use depending on if we are  
//in realplay or song mode  
assign play1 = songorkey?play1m:play1r; 
assign play2 = songorkey?play2m:play2r; 
assign play3 = songorkey?play3m:play3r; 
assign pitch1 = songorkey?pitch1m:pitch1r; 
assign pitch2 = songorkey?pitch2m:pitch2r; 
assign pitch3 = songorkey?pitch3m:pitch3r; 
 
endmodule 
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//This keydecoder takes the output of the 8 bit key code of 
//the keyboard and uses that to find the corresponding musicalnote 
 
module keydecoder(clk,instrument,inkey,ready,outmessage,ready2); 
input clk,ready; 
input [1:0] instrument; 
input [7:0] inkey; 
output [7:0] outmessage; 
output ready2; 
 
reg ready2; 
reg [4:0] current; 
reg [4:0] previous; 
reg [7:0] outmessage,r1,r2; 
 
always @ (posedge clk) begin 
 
r1 <= outmessage; //to level2pulse the outmessage 
r2 <= r1; 
 
//if it is a break, off note then play off message 
//when there is a new outmessage, ready2 goes high 
if (current == 5'd31) begin       
  outmessage <= {instrument,1'b0,5'b00000}; 
  ready2 <= (r1 != r2) ? 1 : 0;  
 end 
 
//if it is NOT a repeat, then play on message 
//when there is a new outmessage, ready2 goes high 
else if (previous != 5'd31 && inkey != 8'd0 && current != 5'd30) begin  
 outmessage <= {instrument,1'b1,current}; 
 ready2 <= (r1 != r2) ? 1 : 0;        
 end 
 
//these are the corresponding pitch codes to the keyboard codes 
 
if(ready) begin 
case(inkey) 
8'h15: current<= 5'd0; //LOW A 
8'h1E: current<= 5'd1; //A# 
8'h1D: current<= 5'd2; //B 
8'h24: current<= 5'd3; //C 
8'h25: current<= 5'd4; //C#   
8'h2D: current<= 5'd5; //D 
8'h2E: current<= 5'd6; //D# 
8'h2C: current<= 5'd7; //E 
8'h35: current<= 5'd8; //F 
8'h3D: current<= 5'd9; //F# 
8'h3C: current<= 5'd10;//G 
8'h3E: current<= 5'd11;//G# 
8'h1A: current<= 5'd12; //MIDDLE A 
8'h1B: current<= 5'd13; //A# 
8'h22: current<= 5'd14; //B 
8'h21: current<= 5'd15; //C 
8'h2B: current<= 5'd16; //C# 
8'h2A: current<= 5'd17; //D    
8'h34: current<= 5'd19; //D# //i switched 34, with 32 
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8'h32: current<= 5'd18; //E 
8'h31: current<= 5'd20; //F 
8'h3B: current<= 5'd21; //F# 
8'h3A: current<= 5'd22; //G 
8'h42: current<= 5'd23; //G# 
8'hF0: current<= 5'd31; //BREAK 
default: current<= 5'd30; 
endcase 
previous <= current; 
end 
end 
 
endmodule  
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//The KeyInterface module handles the interface between the PS/2  
//Keyboard and the FPGA. It takes in the the clk and data from the  
//keyboard and samples the data at low of kclk 
 
module keyinterface(reset,start,kclk,kdata,clk,outdata,ready); 
 
input clk,kclk,kdata,reset,start; 
output [7:0] outdata; 
output ready; 
 
//must level-to-pulse the kclk, the samples determine 
//when the interface samples the kdata from keyboard 
lev2pulse Level2Pulse(clk,kclk,sample);        
  
 
parameter S_INITIAL = 0;    
parameter S_1 = 1; 
 
reg [7:0] message,outdata; 
reg state,started,ready; 
reg [3:0] counter;  
 
always @ (posedge clk) begin 
if (reset) begin   //at reset, state at initial,  
 message <= 0;  //nothing is started and keypress is 0; 
 state <= S_INITIAL; 
 started <= 0; 
 end 
if (start)     //once the start button is pressed,  
 started <= 1;    //nothing is started and keypress is 0; 
else begin 
 case(state)  //if kdata (start bit) is low and module  
 S_INITIAL:  begin //started, counter begins and counting and  
    //nothing is started and keypress is 0; 
    if (~kdata && sample && started) begin 
     state <= S_1; 
     message <= 0; 
     end 
     ready <= 0; 
    end 
 S_1: begin 
   if (counter == 4'b1010 && kdata==1)  
    begin  //when counter reaches 10,   
   
    state <= S_INITIAL;//message has been parsed 
    outdata <= message; 
    ready <= 1; 
    counter <= 0; 
    end 
   else if (sample) begin  //each bit is assigned 
    case(counter) 
    0: message[0] <= kdata;    
    1: message[1] <= kdata;    
    2: message[2] <= kdata;     
    3: message[3] <= kdata; 
    4: message[4] <= kdata; 
    5: message[5] <= kdata; 
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    6: message[6] <= kdata; 
    7: message[7] <= kdata;  
    endcase 
    counter <= counter + 1; 
    end   
   end 
 endcase 
 end 
end 
endmodule 
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//LEV2PULSE: is used by the keyinterface to level to pulse the 
//negative clock edge of the kclk 
 
module lev2pulse(clk,in,out); 
 
 input clk; 
 input in; 
 output out; 
 
 reg r1,r2,r3; 
 always @ (posedge clk) 
 begin 
  r1 <= in; 
  r2 <= r1; 
  r3 <= r2; 
 end 
  
 // level to pulse converter: taking high to low rise 
 assign out = r3 & ~r2;  
endmodule 
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//MASTERUNIT: Interfaces with the 4 memory units to take the messages  
//stored in the memory units and translating the messages to control  
//the 3 instruments.  It has an external control that determines which 
song it will play. 
 
module masterunit(clk,reset,start,songs,ROM1data,ROM2data, 
ROM3data,RAMdata,play1,play2,play3,pitch1,pitch2,pitch3,addressROM, 
addressRAM,we);  
 
input reset,start,clk;   
input [1:0] songs; //songs determines roms to read from  
input [7:0] ROM1data,ROM2data,ROM3data,RAMdata; 
 
output play1,play2,play3,we; 
output [4:0] pitch1, pitch2, pitch3; 
output [7:0] addressROM,addressRAM; 
 
parameter S_INITIAL = 0; 
parameter S_1 = 1; 
parameter S_2 = 2; 
parameter S_3 = 3; 
parameter S_4 = 4; 
 
reg startedcount,startedROM,play1,play2,play3; 
reg [2:0] state; 
reg [5:0] count; 
reg [4:0] pitch1,pitch2,pitch3; 
reg [7:0] address,data; 
 
//wire change; 
counter THEcounter(clk,count,startedcount,change);  
 
always @ (posedge clk) begin 
 
case(songs)    //songs selects which ROMdata to use 
2'b00: data <= RAMdata; //this is from recordram 
2'b01: data <= ROM1data; //this plays "fur elise" 
2'b10: data <= ROM2data; //this play "silent night" 
2'b11: data <= ROM3data; //this is empty 
endcase 
 
if(reset) begin    //everything is initialized 
 state <= S_INITIAL; 
 startedcount <= 0; 
 play1 <= 0; 
 play2 <= 0; 
 play3 <= 0; 
 pitch1 <= 0; 
 pitch2 <= 0; 
 pitch3 <= 0; 
 startedROM <= 0; 
 end 
else begin 
 case(state)       
 S_INITIAL: begin         
   if (start)  //waits for start to start playing 
    state <= S_1; 
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   else  
    address <= 0;  
   end 
 S_1: begin   //This reads from the memory unit 
  startedROM <= 1; 
  state <= S_2;  
  if (startedROM) 
  address <= address + 1;  
  end   
 S_2: state <= S_3;  //buffer state  
 S_3: begin 
  case(data[7:6])  //parses the message  
  2'b00: begin  //This case is the special "pass"  
   startedcount <= 1; //start counting  
   count <= data[5:0]; 
   state <= S_4; //go to S_4 to wait for count 
   end 
  2'b01: begin  //This case is the instrument 1 
   play1 <= data[5]; 
   pitch1 <= data[4:0]; 
   state<= S_1; //go to S_1 to access next address 
   end 
  2'b10: begin  //This case is the instrument 2 
   play2 <= data[5]; 
   pitch2 <= data[4:0]; 
   state<= S_1; 
   end 
  2'b11: begin  //This case is the instrument 3 
   play3 <= data[5]; 
   pitch3 <= data[4:0]; 
   state<= S_1; 
   end 
  endcase  
 end 
 S_4: if (change)   //if change, itis time to access   
   begin   //the next address, S_1 
   state <= S_1; 
   startedcount <= 0; 
   end 
 endcase 
end 
end 
 
 
assign addressROM = address;   
assign addressRAM = address; 
assign we = 0;  // we is always 0 because it is always reading 
 
endmodule 
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//This module msdivider divides the clock into 
//eighth-notes.  This is how we determine 
//how fast to play the stored songs and 
//how fast to record the key-input songs 
//1-bit equals (1/8 of a second) 
 
module msdivider(clk,enable); 
 input clk; 
 output enable; 
 
 reg [19:0] counter; 
 reg temp_enable; 
 always @ (posedge clk) 
 begin 
 
if (counter == 20'd460800) 
   counter <= 0; 
  else 
   counter <= counter+1; 
    if (counter == 0) 
   temp_enable <= 1; 
  else 
   temp_enable <= 0; 
 end 
 
 assign enable = temp_enable; 
 
endmodule 
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//REALPLAY: takes in a message from the keydecoder and translates it  
//into control signals for ONE instrument while the other instruments 
//are silent.   
 
module realplay(clk,message,play1,play2,play3,pitch1,pitch2,pitch3); 
 
input clk; 
input [7:0] message; 
 
output play1,play2,play3; 
output [4:0] pitch1,pitch2,pitch3; 
 
reg play1,play2,play3; 
reg [4:0] pitch1,pitch2,pitch3; 
 
always @ (posedge clk) begin 
case(message[7:6])  //selects which instrument is playing 
2'b01: begin    
 play1 <= message[5]; 
 pitch1 <= message[4:0]; 
 end 
2'b10: begin 
 play2 <= message[5]; 
 pitch2 <= message[4:0]; 
 end 
2'b11: begin 
 play3 <= message[5]; 
 pitch3 <= message[4:0]; 
 end 
default : ; 
endcase  
end 
endmodule 
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//The Record Module in enabled from external control button called rec  
//and stores entries from keyboard input while counting the time that  
//passes between each subsequent message and adds in pass messages. 
 
module record(clk,reset,musicdata,ready2,LED,address,we,data,count, 
startcounter,stopcounter); 
 
input clk,ready2,reset; 
input [7:0] musicdata; 
 
output [7:0] address,data; 
output LED,we,startcounter,stopcounter; 
output [5:0] count; 
 
parameter S_INITIAL = 0; 
parameter S_1 = 1; 
parameter S_2 = 2; 
parameter S_3 = 3; 
parameter S_4 = 4; 
parameter S_5 = 5; 
parameter S_6 = 6; 
 
reg we,LED,started; 
reg [3:0] state; 
reg startcounter,stopcounter; 
reg [7:0] data,address; 
 
//recordcounter takes care of counting the length of keypresses 
wire [5:0] count; 
recordcounter recordcounter(clk,startcounter,stopcounter,count);   
 
always @ (posedge clk) begin 
 
if (reset) 
 state <= S_INITIAL; 
else 
 case(state) 
 S_INITIAL: begin  //initial state, initializes variables 
    address <= 0; 
    we <= 0; 
    data <= 0; 
    started <= 0; 
    if (ready2) begin  // new message  
     state <= S_1; 
     end 
    end  
 S_1: begin  //get the data and address prepared for write 
    started <= 1; 
    we <= 0; 
    data <= musicdata; 
    if(started)    
    address <= address + 1;  
    state <= S_2; 
   end 
 S_2:  begin  //the message gets written to the recordram  
   we <= 1; //while the counter begins to count 
   state <= S_3;    



 44

   end 
 S_3: begin    // buffer state, stopping we while 
    we <= 0;    
    if(ready2) begin  //new message  
     state <= S_4; //to be stored  
     end 
   end 
 S_4: begin  //the counter is stopped and stores time  
    we <= 0;    
    data <= {2'b0,count};  
    address <= address + 1; 
    state <= S_5; 
   end 
 S_5: begin   //the time message is now stored  
   we <= 1; 
   state <= S_6; 
   end 
 S_6: begin    //this is the buffer state  
    we <= 0;    
    state <= S_1; 
   end 
  
 endcase 
 
startcounter <= (state==S_2)?1:0;  //the start of the time recording 
stopcounter <= (state==S_4)?1:0; //the stop of the time recording 
LED <= (address == 8'hFF)? 1:0; //indicates the end of the song 
end 
endmodule 
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//RECORDCOUNTER: Is in charge of recording the length of the 
//keypresses from the keyboard which is stored in the variable count.   
//This length message in turn is stored into the recordram. 
//The record module determines when the recordcounter starts and  
//stops counting.   
 
module recordcounter(clk,startcounter,stopcounter,count); 
 
input clk,startcounter,stopcounter; 
output [5:0] count; 
 
msdivider THEdivider(clk,enable); 
 
reg [5:0] count; 
reg started; 
 
always @ (posedge clk) begin 
if (startcounter) begin 
 started <= 1; 
 count <= 0; 
 end 
else if (stopcounter)  
 started <= 0; 
else if (started&&enable) 
 count <= count + 1; 
end 
endmodule 
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//BLANKTHEROM:  blanks the RECORD RAM 
module blanktherom(clk, start, busy, rom_addr, rom_data, we); 
 
 // Blanks a RAM (misnamed) by writing zeros to all of its 
 // addresses 
 
 input clk, start; 
 output busy, we; 
 output [7:0] rom_addr, rom_data; 
  
 // always write a zero 
 assign rom_data = 0; 
 
 reg [2:0] state; 
 reg busy; 
 reg [7:0] rom_addr; 
 reg we; 
  
 // human-controlled start button must be synchronized 
 wire start_sync; 
 button butt(clk, start, start_sync); 
  
 always @ (posedge clk) begin 
  if (start_sync) begin 
   busy <= 1; 
   rom_addr <= 0; 
   state <= 0; 
  end 
  if (busy) begin 
   case (state) 
   0: begin  // wait state 
    state <= 1; 
    end 
   1: begin  // write a zero 
    we <= 1; 
    state <= 2; 
    end 
   2: begin  // stop writing 
    we <= 0; 
    state <= 3; 
    end 
   3: begin  // increment the rom address 
    rom_addr <= rom_addr + 1; 
    state <= 0; 
    end 
   endcase 
   if (rom_addr == 8'hFF) begin  // reset the 
address 
    rom_addr <= 0; 
    busy<= 0; 
   end 
  end 
 end 
endmodule  
 

 



 47

Appendix B : Chris Sheehan’s Implementation 
with .v, .mif, and .py files 
 
Midi_synth.v 
module midi_synth(clk, reset, result, dabar, pitchA, pitchB, play1, 
play2,  
 start_c, busy_c, sample, violin_sound, volup, voldown, 
vol_control); 
 
 
 
 // Top level module that takes control signals (play, pitch) for 
three instruments, 
 // as well as volume information, and outputs the combined signal 
of the three finished 
 // instruments for a DAC.   
 // 
 // Because of space limitations, two of the instruments (piano and 
flute) are loaded into 
 // this top module, and the other instrument is loaded onto the 
control FPGA. 
 
 input volup, voldown, vol_control; 
 
 
 // The signals controlling the external instrument 
 input busy_c; 
 output start_c, sample; 
 input [7:0] violin_sound; 
 
// Control signals for internal instruments 
 
 input [4:0] pitchA, pitchB; 
 wire [4:0] pitchA, pitchB; 
 input play1, play2; 
 wire play1, play2; 
 
 parameter ROM_data_length = 8; // how many data bits 
 parameter ROM_addr_length = 8; // how many address bits 
 
 input clk, reset; 
 
 
 // Final result, with dabar to time the DAC  
 output [ROM_data_length:0] result; 
 output dabar; 
 
 

wire sample; 
 divider diver(clk, reset, sample); // divide the clock into the 
sampling rate 
 
 
 // DAC FSM asks each of the instrument modules for the next sample 
 wire busy_a, start_a, busy_b, start_b, busy_c, start_c; 
 dac_fsm dacfsm(clk, sample, busy_a, start_a, busy_b, start_b, 
busy_c, start_c, dabar); 
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 // Intermediate data wires 
 
 wire [ROM_data_length-1:0] piano_out; 
 wire [ROM_data_length-1:0] flute_out; 
 wire [ROM_data_length-1:0] violin_out; 
 
 wire [ROM_data_length-1:0] piano_temp; 
 wire [ROM_data_length-1:0] flute_temp; 
 
 // Convert the instrument outputs to  
 
 wire [10:0] inter_output_a, inter_output_b; 
 
 assign inter_output_a = {~piano_temp[7], {~piano_temp[7], 
piano_temp[7:1] - 7'b1000000 } }; 
 
 assign inter_output_b = {~flute_temp[7], {~flute_temp[7], 
flute_temp[7:1] - 7'b1000000 } }; 
 
 wire busypiano, busyflute; 
 
 
 // The final outputs from the flute and piano 
 

wire [7:0] result_a; 
wire [7:0] result_b; 
 
 

 // The internal instruments 
 
 piano instr1(clk, play2, pitchB, reset, start_a, busy_a, 
piano_temp); 
 
 flute instr2(clk, play1, pitchA, reset, start_b, busy_b, 
flute_temp); 
 
 
 // ADSR units post-process the tones from the raw instruments 
 
 adsrpiano mypiano(clk, reset, inter_output_a, ~play2, play2, 
busypiano, sample, result_a); 
 
 adsrflute myflute(clk, reset, inter_output_b, ~play1, play1, 
busyflute, sample, result_b); 
 
 
 // Synchronize the human volume control buttons 
 wire volup_sync, voldown_sync; 
 
 
 button butter(clk, volup, volup_sync); 
 button bitter(clk, voldown, voldown_sync); 
 
 wire[11:0] flute_result; 
 wire[11:0] piano_result; 
 wire[11:0] violin_result;  
 
  
 
 soundcontrol_flute controllerflute(clk, reset, volup_sync, 
voldown_sync, result_b, flute_result); 
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 soundcontrol_violin controllerviolin(clk, reset, volup_sync, 
voldown_sync, violin_sound, violin_result); 
 
 
 wire [10:0] result_temp; 
 
 
 // Select volume controlled instruments, or not 
 
 assign result_temp = (vol_control) ?  piano_result[9:2] 
+flute_result[10:3]+ violin_result[10:3] : 
            result_b 
+result_a+ violin_sound; 
 
 
 // convert back to straight binary 
 assign result = {~result_temp[8], result_temp[7:1]}; 
 
 
endmodule 

Button.v 
module button(clk, in, out); 
 
 // Module synchronizes a slow, asynchronous human input 
 // Converts the level input to a one-clk pulse 
 
 input clk; 
 input in; 
 output out; 
 
 // Avoid a metastable state with cascaded registers 
 
 reg r1,r2,r3; 
 
 always @ (posedge clk) 
 begin 
  r1 <= in; 
  r2 <= r1; 
  r3 <= r2; 
 end 
 
 
 // level to pulse 
 assign out = ~r3 & r2; 
 
endmodule 
 
Combiner.v 
module combiner(in_a, in_b, in_c, out); 
 
 // take three 8 bit inputs in straight binary format 
 // output an 8 bit number that is the sum of all three, taken as 
 // one-fourth of each input, summed. 
 
 // this was not used in the final project, but it was very useful 
for testing 
 // it has now been partially replaced by val's volume controller 
 
 
 input [7:0] in_a, in_b, in_c; 
 output [7:0] out; 
  
 wire [8:0] result1, result2, result3, result_temp;  
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 wire [15:0] b_scaled; 
 wire [7:0] final_b; 
  
 multer mult(3, in_b, b_scaled); 
 //division divider(2, b_multiplied, b_scaled); 
 
 assign final_b = vol_up ? in_b : b_scaled[15:8]; 
 
 // convert to two's complement and shift  
 assign result1 = {~in_a[7], {~in_a[7], in_a[7:1] - 7'b1000000 } }; 
 assign result2 = {~in_b[7], {~in_b[7], in_b[7:1] - 7'b1000000 } }; 
 assign result3 = {~in_c[7], {~in_c[7], in_c[7:1] - 7'b1000000 } }; 
  
 // sum them and convert back to straight binary 
 assign result_temp = result1 + result2 + result3; 
 
 assign out = {~result_temp[8], result_temp[7:1]}; 
 
endmodule 
 
Dac_fsm.v 
 
module dac_fsm(clk, sample, busy_a, start_a, 
 busy_b, start_b, busy_c, start_c, dabar); 
 // controls the instrument sampling and output to DAC 
 // tells each instrument to interpolate once per sample period  
 
 input clk, sample; 
 input busy_a, busy_b, busy_c;  // instrument A is busy 
  
 output start_a, start_b, start_c;  // start instrument A 
 output dabar;  // CS and CE bar of the DAC 
 
 reg [1:0] state; 
 reg dabar, start_a, start_b, start_c; 
 
 always @ (posedge clk) 
 begin 
   
  case (state) 
   0: begin     // wait for sample 
    state <= sample ? 1 : state; 
    dabar <= 1; 
    end 
   1: begin     // output to DAC 
    state <= 2; 
    dabar <= 0; 
    end 
   2: begin   // start interpolation(s) 
    state <= (busy_a && busy_b && busy_c) ? 3 : 
state;   //(busy_a && busy_b) ? 3 : state; 
    start_a <= 1; 
    start_b <= 1; 
    start_c <= 1; 
    dabar <= 1; 
    end 
   3: begin   // wait for interpolation(s) 
    state <= ~(busy_a || busy_b || busy_c) ? 0 : 
state; //~(busy_a || busy_b) ? 0 : state; 
    start_a <= 0; 
    start_b <= 0; 
    start_c <= 0; 
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    end 
   default: state <= 0; // go to wait state 
  endcase 
 end 
 
endmodule 
 

Divider.v 
 
module divider(clk, reset_sync, enable); 
 
 // controls the sampling rate for this project 
 // the stored waveform samples have 256 datapoints for 
 // two complete periods.  the signal should produce a 
 // 440 Hz "A" note, so this works out to 558 samples per 
 // 1/100 sec, if we are using the 1.8432 MHz clock 
 
 input clk, reset_sync; 
 output enable; 
 
 reg [0:10] count; 
 reg enable; 
  
 always @ (posedge clk) 
 begin 
  if (count == 10'd33) // 558 enables per 1/100 sec 
  begin 
   enable <= 1; 
   count <= 0; 
  end 
 
  else begin 
 
   enable <= 0; 
 
   if (reset_sync) 
   begin 
   count <= 0; 
   end 
 
   else begin 
    count <= count + 1; 
   end 
  end 
 end 
 
endmodule 
 

Instrument.v 
 
module instrument(clk, play, note_val, reset, start, busy, result);   
 
 // a generic instrument file.  each instrument will have it's own 
ROM 
 // the instrument has a note_lookup table, an interp_fsm to 
control it 
 // and process the start and reset signals, and an interp_calc to 
actually 
 // calculate the interpolation result. 
 
 parameter ROM_data_length = 8; // how many data bits 
 parameter ROM_addr_length = 8; // how many address bits 
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 input clk; 
 input play;    // signal to start playing from the 
song fsm 
 input reset, start;  // overall control signals 
 input [4:0] note_val; // numerical note / pitch value ("C" "D" 
or "E"...) 
 
 output busy;    // tells dac_fsm it is still 
performing interpolation 
 output [ROM_data_length-1:0] result; // the result of this 
sample 
  
 wire [9:0] increment_val; // amount to increase frequency of 
stored ROM sample 
 
 wire [4:0] note_val; 
 note_lookup_rom notelookup(note_val, increment_val); // note 
value lookup table 
 
 wire [ROM_data_length-1:0] rom_data; 
 wire [ROM_addr_length-1:0] rom_addr; 
 wire [ROM_data_length-1:0] val_a;  
 wire [ROM_data_length-1:0] val_b;  
 wire [7:0] fraction; 
 wire start_internal;    //FSM doesn't start if play 
isn't high 
 wire [ROM_data_length-1:0] interp_result; // result is zero if 
play isn't high 
 
 
 assign start_internal = start; 
 
 
 interp_fsm interpfsm(clk, increment_val, rom_data, reset, 
start_internal, busy, val_a, val_b, 
 
    rom_addr, fraction); // interpolation fsm 
 
 // this may be replaced with flutewaverom, pianowaverom, or 
violinwaverom 
 // to produce a flute, piano, or violin instruement.  doing this 
produces 
 // three separate verilog files 
 
 sinerom romrom(rom_addr, rom_data); 
 
 interp_calc interpcalc(fraction, val_a, val_b, interp_result);
 // interpolation calculator 
 
 reg [7:0] result_internal; 
 
 // because the stored samples produce data values that are 
 // straight binary, the "zero" value produced when nothing is 
being 
 // played should be the average value of the signal, or 128 here 
 
 assign result = play ? interp_result: 128; 
 
 
endmodule 
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Interp_calc.v 
 
module interp_calc(fraction, low_val, high_val, result);//, 
high_result); 
 
// perform linear interpolation given two values and fraction 
 
 
 parameter ROM_data_length = 8; // how many data bits 
 parameter ROM_addr_length = 8; // how many address bits 
  
   
 input [7:0] fraction; // fractional part of the virtual ROM 
address  
 
 input [ROM_data_length-1:0] low_val; // value in ROM before 
the virtual address 
 input [ROM_data_length-1:0] high_val; // value in ROM after 
the virtual address 
 
 output [ROM_data_length-1:0] result; // result of 
interpolation (integer) 
 
 
 // find the fraction complement to multiply the low value by 
 wire [7:0] comple_fract = 1 - fraction; 
 
 
 // Get the weighted part of the high value 
 wire [15:0] high_result; 
 multer multhigh(high_val, fraction, high_result); 
 
 // Get the weighted part of the low value 
 wire [15:0] low_result; 
 multer multlow(low_val, comple_fract, low_result); 
 
 // Add them together and output the correct range    
 wire [15:0] result_temp = high_result + low_result; 
  
 assign result = result_temp[15:8]; 
  
 
endmodule 
 

Interp.fsm.v 
 
module interp_fsm(clk, increment, rom_data, reset, start, 
  busy, val_a, val_b, rom_addr, 
  virtual_rom_addr, 
  fraction 
  ); 
 
 
// keeps track of a virtual address pointer representing the address of 
the sample in ROM 
// that we would like to interpolated the value of (i.e. ROM[1.34]).  
the module increments 
// this value every time it is invoked by the input increment, or it 
resets the address if 
// reset is asserted.  the module passes the values in the nearest ROM 
addresses (1 and 2 if 
// the virtual address is 1.34), as well as the fractional part of the 
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virtual address (0.34), 
// to an interpolator calculation unit. 
 
 
 parameter ROM_data_length = 8; // how many data bits 
 parameter ROM_addr_length = 8; // how many address bits 
 

input clk; 
 input start; // tells the FSM to begin interpolating 
 input reset; 
 
 input [9:0] increment;  // amount to increment virtual address to 
ROM 
     // amount to increase the frequency of the 
sampled data in ROM 
     // top 2 bits are integer part, bottom 8 
are fractional part 
 

input [ROM_data_length-1:0] rom_data; // sampled data 
 
 
 output busy; // indicates that interpolation has not finished 
 output [ROM_data_length-1:0] val_a; // first sampled data value 
 output [ROM_data_length-1:0] val_b; // second sampled data value 
       // these values go into the 
interpolation computer module, 
       // which will take a weighted 
average of them 
 

output [ROM_addr_length-1:0] rom_addr; // real ROM address 
 output [ROM_addr_length + 7:0] virtual_rom_addr; 
 
 output [7:0] fraction; 
 
 reg [3:0] state; 
 reg [ROM_addr_length + 7:0] virtual_rom_addr; 
       // the address that we will 
interpolate the value of 
       // top bits are integer part, 
bottom 8 are the fractional part 
 
 assign fraction = virtual_rom_addr[7:0]; // fractional part of 
virtual rom address 
 
 reg [ROM_addr_length-1:0] rom_addr; 
 reg [ROM_data_length-1:0] val_a; 
 reg [ROM_data_length-1:0] val_b;  
 
 
 wire [ROM_addr_length-1:0] low_rom_addr; // floor{virtual 
address} 
 wire [ROM_addr_length-1:0] high_rom_addr; // ceiling{virtual 
address} 
 
 assign low_rom_addr = {virtual_rom_addr[(ROM_addr_length + 7) : 
8]}; 
 // the lower ROM address is the integer value of the virtual one 
 
 assign high_rom_addr = low_rom_addr + 1; 
 
 // the higher ROM address is one more than the lower one 
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 reg busy; 
 reg [12:0] counter; 
 
 always @ (posedge clk) 
 begin 
  if (reset)  
   state <= 0; 
 
  else begin 
   
  case (state) 
   0: begin 
    state <= 1;      // 
reset the virtual address 
    virtual_rom_addr <= 0; 
    busy<=0; 
    end 
 
   1: begin state <= start ? 2 : state;  // 
wait for start signal 
    busy <=0; end 
 
   2: begin 
    state <= 3;      // 
increment the virtual address 
    virtual_rom_addr <= virtual_rom_addr + 
increment; 
    busy <= 1; 
    end 
 
   3: begin 
    state <= 4;      // 
assert the lower sample address 
    rom_addr <= low_rom_addr[ROM_addr_length-1:0]; 
    end 
 
   4: begin 
    state <= 5;      // 
read the lower sample data 
    val_a <= rom_data; 
    end 
 
   5: begin 
    state <= 6;      // 
assert ths higher sample address 
    rom_addr <= high_rom_addr; 
    end 
 
   6: begin 
    state <= 7;      // 
read the lower sample data 
    val_b <= rom_data; 
    end 
 
   7: begin 
    state <= 1; 
    end 
 
 
   default: state <= 0; 
 
  endcase 
  end 
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 end 
 
endmodule 
 

Manual_play.v 
 
module manual_play(clk, reset, play1, play2, pitch, result, dabar); 
 
 // play notes on instruments through manual inputs on FPGA 
 //  for testing only 
 
 parameter ROM_data_length = 8; // how many data bits 
 parameter ROM_addr_length = 8; // how many address bits 
 
 input clk, reset, play1, play2; 
 output [ROM_data_length-1:0] result; 
 output dabar; 
 
 input [4:0] pitch; 
 wire [4:0] pitch; 
 
 wire sample; 
 divider diver(clk, reset, sample); 
 
 wire busy_a, start_a; 
 dac_fsm dacfsm(clk, sample, busy_a, start_a, busy_b, start_b, 
busy_c, start_c, dabar); 
 
 wire [ROM_data_length-1:0] result_temp1; 
 wire [ROM_data_length-1:0] result_temp2; 
  
 wire [8:0] result1; 
 
 // add up half the first result plus a fourth of the second result 
 
 assign result1 = {~result_temp1[7], result_temp1 - 8'b10000000 } + 
{~result_temp2[7],{~result_temp2[7], result_temp2[7:1] - 7'b1000000 } }; 
 
 assign result = {~result1[8], result1[7:1]}; 
 
 wire play1, play2;  
 
 // two regular instruments 
 
 instrument instr1(clk, play1, pitch, reset, start_a, busy_a, 
result_temp1); 
 
 instrument instr2(clk, play2, 5'b11100, reset, start_b, busy_b, 
result_temp2); 
 
endmodule 
 

Note_lookup.v 
 
module note_lookup(note_val, increment_val); 
 // DUMMY note lookup table for testing 
 
 // looks up a note value (between 0 and 24) in a ROM, and converts 
it to an 
 // increment value.  this is the value by which we must increase 
the 
 // frequency of the sample in ROM in order to produce the desire 
note, like 
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 // a "C." 
 
 input [4:0] note_val; // integer from 0 - 24 
   // 0 is the low C, 12 is middle C, 24 is high C 
 output [9:0] increment_val; 
       // lower 8 bits are fractional 
part, higher bits are integer 
 
 assign increment_val = 10'h100;  // output constant for 
now 
 
endmodule 
 

Song MIF Files 
FurElise.mif 
WIDTH = 8; 
DEPTH = 256; 
 
 
ADDRESS_RADIX = DEC; 
DATA_RADIX = DEC; 
 
CONTENT BEGIN 
 0 : 1; 
 1 : 115; 
 2 : 1; 
 3 : 64; 
 4 : 114; 
 5 : 1; 
 6 : 64; 
 7 : 115; 
 8 : 1; 
 9 : 64; 
 10 : 114; 
 11 : 1; 
 12 : 64; 
 13 : 115; 
 14 : 1; 
 15 : 64; 
 16 : 110; 
 17 : 1; 
 18 : 64; 
 19 : 113; 
 20 : 1; 
 21 : 64; 
 22 : 111; 
 23 : 1; 
 24 : 64; 
 25 : 108; 
 26 : 160; 
 27 : 1; 
 28 : 128; 
 29 : 167; 
 30 : 1; 
 31 : 128; 
 32 : 64; 
 33 : 172; 
 34 : 1; 
 35 : 128; 
 36 : 99; 
 37 : 1; 
 38 : 64; 
 39 : 103; 
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 40 : 1; 
 41 : 64; 
 42 : 108; 
 43 : 1; 
 44 : 64; 
 45 : 110; 
 46 : 167; 
 47 : 1; 
 48 : 128; 
 49 : 171; 
 50 : 1; 
 51 : 128; 
 52 : 64; 
 53 : 174; 
 54 : 1; 
 55 : 128; 
 56 : 103; 
 57 : 1; 
 58 : 64; 
 59 : 107; 
 60 : 1; 
 61 : 64; 
 62 : 110; 
 63 : 1; 
 64 : 64; 
 65 : 111; 
 66 : 160; 
 67 : 1; 
 68 : 128; 
 69 : 167; 
 70 : 1; 
 71 : 128; 
 72 : 64; 
 73 : 172; 
 74 : 1; 
 75 : 128; 
 76 : 103; 
 77 : 1; 
 78 : 64; 
 79 : 115; 
 80 : 1; 
 81 : 64; 
 82 : 114; 
 83 : 1; 
 84 : 64; 
 85 : 115; 
 86 : 1; 
 87 : 64; 
 88 : 114; 
 89 : 1; 
 90 : 64; 
 91 : 115; 
 92 : 1; 
 93 : 64; 
 94 : 110; 
 95 : 1; 
 96 : 64; 
 97 : 113; 
 98 : 1; 
 99 : 64; 
 100 : 111; 
 101 : 1; 
 102 : 64; 
 103 : 108; 
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 104 : 160; 
 105 : 1; 
 106 : 128; 
 107 : 167; 
 108 : 1; 
 109 : 128; 
 110 : 64; 
 111 : 172; 
 112 : 1; 
 113 : 128; 
 114 : 99; 
 115 : 1; 
 116 : 64; 
 117 : 103; 
 118 : 1; 
 119 : 64; 
 120 : 108; 
 121 : 1; 
 122 : 64; 
 123 : 110; 
 124 : 167; 
 125 : 1; 
 126 : 128; 
 127 : 171; 
 128 : 1; 
 129 : 128; 
 130 : 64; 
 131 : 174; 
 132 : 1; 
 133 : 128; 
 134 : 103; 
 135 : 1; 
 136 : 64; 
 137 : 107; 
 138 : 1; 
 139 : 64; 
 140 : 110; 
 141 : 1; 
 142 : 64; 
 143 : 108; 
 144 : 160; 
 145 : 1; 
 146 : 128; 
 147 : 167; 
 148 : 1; 
 149 : 128; 
 150 : 172; 
 151 : 1; 
 152 : 128; 
 153 : 1; 
 154 : 64; 
 155 : 4; 
 156 : 0; 
 157 : 0; 
  : 
  : 
  : 
 % continued….% 
 
END; 

SilentNight.mif 
WIDTH = 8; 
DEPTH = 256; 
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ADDRESS_RADIX = DEC; 
DATA_RADIX = DEC; 
 
CONTENT BEGIN 
 0 : 108; 
 1 : 165; 
 2 : 233; 
 3 : 3; 
 4 : 64; 
 5 : 110; 
 6 : 1; 
 7 : 64; 
 8 : 108; 
 9 : 2; 
 10 : 64; 
 11 : 128; 
 12 : 192; 
 13 : 105; 
 14 : 160; 
 15 : 229; 
 16 : 6; 
 17 : 64; 
 18 : 128; 
 19 : 192; 
 20 : 108; 
 21 : 165; 
 22 : 233; 
 23 : 3; 
 24 : 64; 
 25 : 110; 
 26 : 1; 
 27 : 64; 
 28 : 108; 
 29 : 2; 
 30 : 64; 
 31 : 128; 
 32 : 192; 
 33 : 105; 
 34 : 160; 
 35 : 229; 
 36 : 6; 
 37 : 64; 
 38 : 128; 
 39 : 192; 
 40 : 115; 
 41 : 160; 
 42 : 240; 
 43 : 3; 
 44 : 64; 
 45 : 128; 
 46 : 192; 
 47 : 1; 
 48 : 115; 
 49 : 160; 
 50 : 240; 
 51 : 2; 
 52 : 64; 
 53 : 128; 
 54 : 192; 
 55 : 112; 
 56 : 172; 
 57 : 231; 
 58 : 5; 
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 59 : 64; 
 60 : 128; 
 61 : 192; 
 62 : 1; 
 63 : 113; 
 64 : 172; 
 65 : 243; 
 66 : 3; 
 67 : 64; 
 68 : 128; 
 69 : 192; 
 70 : 1; 
 71 : 113; 
 72 : 172; 
 73 : 243; 
 74 : 2; 
 75 : 64; 
 76 : 128; 
 77 : 192; 
 78 : 108; 
 79 : 165; 
 80 : 233; 
 81 : 6; 
 82 : 64; 
 83 : 128; 
 84 : 192; 
 85 : 110; 
 86 : 165; 
 87 : 234; 
 88 : 3; 
 89 : 64; 
 90 : 128; 
 91 : 192; 
 92 : 1; 
 93 : 110; 
 94 : 165; 
 95 : 234; 
 96 : 2; 
 97 : 64; 
 98 : 128; 
 99 : 192; 
 100 : 113; 
 101 : 234; 
 102 : 165; 
 103 : 3; 
 104 : 64; 
 105 : 112; 
 106 : 1; 
 107 : 64; 
 108 : 110; 
 109 : 2; 
 110 : 64; 
 111 : 128; 
 112 : 192; 
 113 : 108; 
 114 : 165; 
 115 : 233; 
 116 : 3; 
 117 : 64; 
 118 : 110; 
 119 : 1; 
 120 : 64; 
 121 : 108; 
 122 : 2; 
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 123 : 64; 
 124 : 128; 
 125 : 192; 
 126 : 105; 
 127 : 165; 
 128 : 6; 
 129 : 64; 
 130 : 128; 
 131 : 110; 
 132 : 165; 
 133 : 234; 
 134 : 3; 
 135 : 64; 
 136 : 128; 
 137 : 192; 
 138 : 1; 
 139 : 110; 
 140 : 165; 
 141 : 234; 
 142 : 2; 
 143 : 64; 
 144 : 128; 
 145 : 192; 
 146 : 113; 
 147 : 234; 
 148 : 165; 
 149 : 3; 
 150 : 64; 
 151 : 112; 
 152 : 1; 
 153 : 64; 
 154 : 110; 
 155 : 2; 
 156 : 64; 
 157 : 128; 
 158 : 192; 
 159 : 108; 
 160 : 165; 
 161 : 233; 
 162 : 3; 
 163 : 64; 
 164 : 110; 
 165 : 1; 
 166 : 64; 
 167 : 108; 
 168 : 2; 
 169 : 64; 
 170 : 128; 
 171 : 192; 
 172 : 105; 
 173 : 165; 
 174 : 6; 
 175 : 64; 
 176 : 128; 
 177 : 115; 
 178 : 240; 
 179 : 160; 
 180 : 3; 
 181 : 64; 
 182 : 192; 
 183 : 1; 
 184 : 115; 
 185 : 240; 
 186 : 2; 
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 187 : 64; 
 188 : 128; 
 189 : 192; 
 190 : 118; 
 191 : 160; 
 192 : 231; 
 193 : 3; 
 194 : 64; 
 195 : 115; 
 196 : 1; 
 197 : 64; 
 198 : 112; 
 199 : 2; 
 200 : 64; 
 201 : 128; 
 202 : 192; 
 203 : 113; 
 204 : 165; 
 205 : 236; 
 206 : 5; 
 207 : 64; 
 208 : 128; 
 209 : 192; 
 210 : 1; 
 211 : 117; 
 212 : 165; 
 213 : 236; 
 214 : 5; 
 215 : 64; 
 216 : 128; 
 217 : 192; 
 218 : 1; 
 219 : 113; 
 220 : 165; 
 221 : 224; 
 222 : 2; 
 223 : 64; 
 224 : 108; 
 225 : 2; 
 226 : 64; 
 227 : 105; 
 228 : 2; 
 229 : 64; 
 230 : 128; 
 231 : 192; 
 232 : 160; 
 233 : 108; 
 234 : 3; 
 235 : 64; 
 236 : 106; 
 237 : 1; 
 238 : 64; 
 239 : 103; 
 240 : 2; 
 241 : 64; 
 242 : 128; 
 243 : 113; 
 244 : 172; 
 245 : 12; 
 246 : 64; 
 247 : 128; 
 248 : 12; 
 249 : 0; 
 250 : 0; 
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 251 : 0; 
 252 : 0; 
 253 : 0; 
 254 : 0; 
 255 : 0; 
 
END; 
 
 

Python Code 
ROM_generator.py 
# Makes a ROM of specified length and width containing 
# coefficients for a number of periods of a sine wave. 
 
import math 
 
depth = 256      # number of lines in the ROM 
width = 8        # width of ROM (in bits) 
periods = 2     # number of periods per ROM 
 
highest = int(math.pow(2, width)) 
 
romfile = open('c://sineReg.mif','w') 
 
romfile.write('WIDTH = ' + str(highest) + ';\n') 
romfile.write('DEPTH = ' + str(depth) + ';\n') 
romfile.write('\n\n') 
romfile.write('ADDRESS_RADIX = DEC;\n') 
romfile.write('DATA_RADIX = DEC;\n\n') 
romfile.write('CONTENT BEGIN\n') 
 
for address in range(depth): 
 num = address * (periods*2*math.pi)/depth 
 result = math.sin(num) 
 data = int(round(highest/2 * result + highest/2)) 
 line = '\t' + str(address) + '\t:\t' + str(data) + ';\n' 
        romfile.write(line) 
 print line 
 
 
romfile.write('\nEND;\n') 
 
romfile.close() 
 
 

Songwriter.py 
 
# creates a .mif file from pseudo code in a text file 
# ROM length is always 256 
 
import string 
 
fundamental = 1 # clicks per pause 
length = 256  # length of ROM 
 
# convert a line of pseudocode to a .mif line 
def convert_line(line): 
    end = string.find(line, '\n') 
    print line 
 
    # off signal 
    if (line[0:3] == 'off'): 
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        instrument = int(line[3:end]) 
        message = get_instrument(instrument) 
 
    # pause signal 
    elif (line[0] == 'p'): 
        message = int(line[1:end]) 
 
    # on signal 
    else: 
        split = string.find(line, 'o') 
        instrument = int(line[0:split]) 
        note = int(line[split+1:end]) 
 
        message = 32 + note + get_instrument(instrument) 
 
    return str(message) 
 
# based on instrument, get the decimal value for the instruction 
def get_instrument(instr): 
    if (instr==1): 
        return 64 
    elif (instr==2): 
        return 128 
    else: 
        return 192 
 
 
# input file name 
filein = open('c:\\python23\\work\\silentnight.txt','r') 
lines = filein.readlines() 
 
 
filein.close 
 
# output filename 
fileout = open('c:\\python23\\work\\silentnight.mif','w') 
 
# beginning of ROM file 
fileout.write('WIDTH = 8;\n') 
fileout.write('DEPTH = ' + str(length) + ';\n') 
fileout.write('\n\n') 
fileout.write('ADDRESS_RADIX = DEC;\n') 
fileout.write('DATA_RADIX = DEC;\n\n') 
fileout.write('CONTENT BEGIN\n') 
 
outputlines = [] 
 
for i in range(length): 
    outputlines.append('0') 
 
counter = 0 
 
# step through all the lines in the file 
for line in lines: 
    # skip comment lines beginning with ----- 
    if (line[0] != '-'): 
        outputlines[counter] = convert_line(line) 
        counter = counter + 1 
 
print outputlines 
 
# create the .mif file 
for address in range(length): 
    data = outputlines[address] 
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    theline = '\t' + str(address) + '\t:\t' + str(data) + ';\n' 
    fileout.write(theline) 
 
fileout.write('\nEND;\n') 
 
fileout.close() 

 
 
Appendix C:  Valerie Gordeski’s Implementation 
with .mif files 
 
 
ADSRPIANO.V 
 
// This module sets the envelope shape for the piano 
module ADSRpiano(clk, reset, inter_output, endtime, start, busy, 
enable, result); 
 
input start, enable, reset, clk, endtime; 
input[7:0] inter_output; 
 
output busy; 
output[7:0] result; 
 
reg[6:0] atkptr, decayptr, susptr; // pointers used to keep track of 
//where we are in memory 
reg[14:0] counter; 
reg[8:0] counter_temp; 
reg[1:0] state; 
reg[6:0] addressrom; 
reg busy; 
wire[7:0] q1;  
wire[7:0] q2; 
wire[15:0] resultmult; 
 
parameter attack=1; 
parameter decay=2; 
parameter sustain=3; 
parameter idle=0; 
 
assign q2 = inter_output; // this is what goes into the multiplier 
assign result = resultmult[15:8]; // we select highest bits of the 
//result as our output 
 
// this rom stores the envelope coefficients 
pianoROM mypianorom (addressrom, q1); // q1 is unsigned 
 
 
// this multiplier multiplies the coefficients by the interpolator 
//output 
pianomult mymult (q1, q2, resultmult); 
 
always @ (posedge clk) 
begin 
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 if (reset) 
  begin 
   state<=idle; 
  end 
 else case (state) 
 attack: 
  begin 
  addressrom<=atkptr; // keep track of address 
  if (enable) 
  begin 
  if (endtime) 
   state<=idle; 
  else if (counter == 2618) // change state 
  //else if (counter == 30) 
   begin 
    counter<=0; 
    counter_temp<=0; 
    atkptr<=0; 
    state<=decay; 
   end 
  else if (counter_temp == 109) // increment pointer 
  //else if (counter_temp == 5) 
   begin 
    counter_temp<=0; 
    counter<=counter+1; 
    atkptr <= atkptr+1; 
    state <= state; 
   end 
  else  
   begin 
    counter_temp<=counter_temp+1; 
    counter<=counter+1; 
    state<=state; 
   end 
  end 
  end 
 decay: 
  begin 
  if (enable) 
  begin 
   addressrom<=decayptr; 
  if (endtime) 
   state<=idle; 
  else if (counter == 872) 
  // else if (counter == 10) 
    begin 
     counter<=0; 
     counter_temp<=0; 
     state<=sustain; 
     decayptr<=24; 
    end 
   else if (counter_temp == 109) 
   //else if (counter_temp == 5) 
    begin 
    counter_temp<=0; 
    counter<=counter+1; 
    decayptr<= decayptr+1; 
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    state<=state; 
    end 
   else 
    begin 
    counter_temp<=counter_temp+1; 
    counter<=counter+1; 
    state<=state; 
    end 
   end 
  end 
 sustain: 
  begin 
  addressrom<=susptr;    
   if (endtime) 
    begin 
     counter<=0; 
     counter_temp <=0; 
     state <= idle; 
    end 
  else if (enable) 
   begin 
    if (susptr==127) 
     begin 
      susptr<=119; 
      counter<=0; 
      counter_temp<=0; 
      state<=state; 
     end 
    else if (counter_temp == 109) 
    //else if (counter_temp == 5) 
     begin 
      counter_temp<=0; 
      susptr<=susptr+1; 
     end 
    else 
     begin 
     
 counter_temp<=counter_temp+1; 
      state<=state; 
     end 
   end // elseif enable 
  end // sustain 
 idle: 
  begin 
   atkptr<=0; 
   decayptr<=24; 
   susptr<=32; 
   busy<=0; 
   counter<=0; 
   counter_temp<=0; 
   if (start) 
    begin 
     busy<=1; 
     state<=attack; 
    end 
   else state<=state; 
  end 
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 default: state<= idle; 
endcase 
 
end// always 
 
endmodule 
   
 
 
ADSRFLUTE.V 
// sets the evelope shape for the flute 
module ADSRflute(clk, reset, inter_output, endtime, start, busy, 
enable, result); 
 
input start, enable, reset, clk, endtime; 
input[7:0] inter_output; 
 
output busy; 
output[7:0] result; 
 
reg[6:0] atkptr, decayptr; 
reg[14:0] counter; 
reg[8:0] counter_temp; 
reg[2:0] state; 
reg[6:0] addressrom; 
reg busy; 
wire[7:0] q1;  
wire[7:0] q2; 
wire[15:0] resultmult; 
 
parameter attack=1; 
parameter decay=2; 
parameter idle=0; 
 
assign q2 = inter_output; 
assign result = resultmult[15:8]; // we select highest bits of the  
//result after multiplication 
 
fluteROM myfluterom (addressrom, q1); // multiplication is signed 
flutemult myflutemult (q1, q2, resultmult); 
 
always @ (posedge clk) 
 begin 
  if (reset) 
   begin 
    state<=idle; 
   end 
  else case (state) 
  attack: 
   begin 
   addressrom<=atkptr; 
   if (endtime) 
    begin 
     busy<=0; 
     state<=idle; 
    end 
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   if (enable) 
    begin 
    if (counter == 6981)  
    //if (counter == 30) 
     begin 
      counter<=0; 
      counter_temp<=0; 
      atkptr<=0; 
      state<=decay; 
     end 
    else if (counter_temp == 109) 
    //else if (counter_temp == 5) 
     begin 
      counter_temp<=0; 
      counter<=counter+1; 
      atkptr <= atkptr+1; 
      state <= state; 
     end 
    else  
     begin 
     
 counter_temp<=counter_temp+1; 
      counter<=counter+1; 
      state<=state; 
     end 
    end 
   end 
  decay: 
   begin 
   addressrom<=decayptr;    
   if (endtime) 
    begin 
     counter<=0; 
     counter_temp <=0; 
     state <= idle; 
    end 
   else if (enable) 
    begin 
     if (decayptr==92) // decayptr 
//keeps looping, giving the flute its fluttering sound 
      begin 
       decayptr<=35; 
       state<=state; 
      end 
     else if (counter_temp == 109) 
     //else if (counter_temp == 5) 
      begin 
      decayptr<=decayptr+1; 
       counter_temp<=0; 
      end 
     else 
      begin 
     counter_temp<=counter_temp+1; 
     state<=state; 
      end 
    end // elseif enable 
   end // begin 
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  idle: 
   begin 
    atkptr<=0; 
    decayptr<=64; 
    busy<=0; 
    counter<=0; 
    counter_temp<=0; 
    if (start)  // at the start signal, begin 
     begin 
      busy<=1; 
      state<=attack; 
     end 
    else state<=state; 
   end 
 endcase 
 end// always 
 
endmodule 
  
 
ADSRVIOLIN.V 
 
// this module follows the model of the piano ADSR 
module ADSRviolin(clk, reset, inter_output, endtime, start, busy, 
enable, result); 
 
input start, enable, reset, clk, endtime; 
input[7:0] inter_output; 
 
output busy; 
output[7:0] result; 
 
reg[6:0] atkptr, susptr; 
reg[14:0] counter; 
reg[8:0] counter_temp; 
reg[1:0] state; 
reg[6:0] addressrom; 
reg busy; 
wire[7:0] q1;  
wire[7:0] q2; 
wire[15:0] resultmult; 
 
parameter attack=1; 
parameter sustain=2; 
parameter idle=0; 
 
assign q2 = inter_output; 
assign result = resultmult[15:8]; 
 
violinROM myviolinrom (addressrom, q1); // q1 is signed 
violinmult myviolinmult (q1, q2, resultmult); 
 
always @ (posedge clk) 
begin 
 if (reset) 
  begin 
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   state<=idle; 
  end 
 else case (state) 
 attack: 
  begin 
  addressrom<=atkptr; 
  if (endtime) // if finished, then go to idle state 
   begin 
    counter<=0; 
    counter_temp <=0; 
    state <= idle; 
   end 
  else if (enable) 
   begin 
   if (counter == 2618) // set counter value to 
switch states 
   //if (counter == 30) debugging 
    begin 
     counter<=0; 
     counter_temp<=0; 
     atkptr<=0; 
     state<=sustain; 
    end 
   else if (counter_temp == 109)//increments ptrs 
   // else if (counter_temp == 5) 
    begin 
     counter_temp<=0; 
     counter<=counter+1; 
     atkptr <= atkptr+1; 
     state <= state; 
    end 
   else  
    begin 
     counter_temp<=counter_temp+1; 
     counter<=counter+1; 
     state<=state; 
    end 
   end // enable 
  end // attack 
  sustain: 
   begin 
   addressrom<=susptr;    
   if (endtime) 
    begin 
     counter<=0; 
     counter_temp <=0; 
     state <= idle; 
    end 
   else if (enable) 
    begin 
     if (susptr==127) // keeps looping 
//in the sustain region until entime signal is obtained 
      begin 
       susptr<=24; 
       counter<=0; 
       counter_temp<=0; 
       state<=state; 
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      end 
     //else if (counter_temp == 109) 
     else if (counter_temp == 5) 
      begin 
       counter_temp<=0; 
       susptr<=susptr+1; 
      end 
     else 
      begin 
      
 counter_temp<=counter_temp+1; 
       state<=state; 
      end 
    end //elseif enable 
   end // sustain 
 idle: 
  begin 
   atkptr<=0; 
   susptr<=24; 
   busy<=0; 
   counter<=0; 
   counter_temp<=0; 
   if (start) 
    begin 
     busy<=1; 
     state<=attack; 
    end 
   else state<=state; 
  end 
 default: state<= idle; 
endcase 
 
end// always 
 
endmodule 
 
// This module controls the volume for the flute. The other two modules  
// controlling the volume for the piano and the violin remain 
//uncommented because they follow exact the same patter  
module soundcontrol_flute (clk, reset, volup, voldown, in, out); 
 
input clk, reset, volup, voldown; 
input[7:0] in; 
 
output[11:0] out; 
wire[11:0] volumeup1, volumeup2, volumedown1, volumedown2; 
reg [2:0] remainder_a, remainder_b, remainder_c, remainder_d; 
reg[2:0] count; 
 
 
wire[11:0] out_temp; 
wire[12:0] product1, product3, product4; 
 
// these dividers and multipliers provide the right fraction by which 
to multiply 
soundcontrol_divider volup1flute (product1, 7, volumeup1, remainder_a); 
soundmult multvolup1flute (in, 8, product1); 
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soundcontrol_divider voldown1flute (product3, 4, volumedown1, 
remainder_c); 
soundmult multvoldown1flute (in, 3, product3); 
 
 
soundcontrol_divider voldown2flute (product4, 4, volumedown2, 
remainder_d); 
soundmult multvoldown2flute (in, 2, product4); 
 
 
// this out temp checks which count value has been obtained, therefore 
//choosing the right output of the multiplication for its output 
assign out_temp = (count==2) ? in :  
   ((count==3) ? volumeup1 :  
   ((count==1) ? volumedown1 :  
   ((count==0) ? volumedown2 : out_temp))); 
 
assign out = out_temp; 
 
// this clocked block keeps track of the number of button presses, and 
//assigns the count value which determines whether the volume is going 
//up or down. 
always @ (posedge clk) 
begin 
 if (reset) 
 count<=2; 
 else if (volup) 
 if (count == 3) 
  count<=count; 
 else count<=count+1; 
 else if (voldown) 
 begin 
  if (count == 0) 
   count<=count; 
  else 
  count<=count-1; 
 end  
else 
 count<=count; 
end 
 
endmodule 
 
 
module soundcontrol_piano (clk, reset, volup, voldown, in, out); 
 
input clk, reset, volup, voldown; 
input[7:0] in; 
 
output[11:0] out; 
wire[11:0] volumeup1, volumeup2, volumedown1, volumedown2; 
reg [2:0] remainder_a, remainder_b, remainder_c, remainder_d; 
reg[2:0] count; 
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wire[11:0] out_temp; 
wire[12:0] product1, product3, product4; 
 
 
soundcontrol_divider volup1 (product1, 7, volumeup1, remainder_a); 
soundmult multvolup1 (in, 8, product1); 
 
 
soundcontrol_divider voldown1 (product3, 4, volumedown1, remainder_c); 
soundmult multvoldown3 (in, 3, product3); 
 
 
soundcontrol_divider voldown2 (product4, 4, volumedown2, remainder_d); 
soundmult mult (in, 2, product4); 
 
assign out_temp = (count==2) ? in :  
     ((count==3) ? volumeup1 :  
       ((count==1) ? 
volumedown1 :  
       
 ((count==0) ? volumedown2 : out_temp))); 
 
assign out = out_temp; 
 
always @ (posedge clk) 
begin 
 if (reset) 
 count<=2; 
 else if (volup) 
 if (count == 3) 
  count<=count; 
 else count<=count+1; 
 else if (voldown) 
 begin 
  if (count == 0) 
   count<=count; 
  else 
  count<=count-1; 
 end  
else 
 count<=count; 
end 
 
endmodule 
 
 
module soundcontrol_violin (clk, reset, volup, voldown, in, out); 
 
input clk, reset, volup, voldown; 
input[7:0] in; 
 
output[11:0] out; 
wire[11:0] volumeup1, volumedown1, volumedown2; 
reg [2:0] remainder_a, remainder_b, remainder_c, remainder_d; 
reg[2:0] count; 
 
wire[11:0] out_temp; 
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wire[12:0] product1, product3, product4; 
 
 
soundcontrol_divider volup1viol (product1, 7, volumeup1, remainder_a); 
soundmult multvolup1viol (in, 8, product1); 
 
 
soundcontrol_divider voldown1viol (product3, 4, volumedown1, 
remainder_c); 
soundmult multvoldown1viol (in, 3, product3); 
 
 
soundcontrol_divider voldown2viol (product4, 4, volumedown2, 
remainder_d); 
soundmult multvoldown2viol (in, 2, product4); 
 
assign out_temp = (count==2) ? in :  
     ((count==3) ? volumeup1 :  
       ((count==1) ? 
volumedown1 :  
       
 ((count==0) ? volumedown2 : out_temp))); 
 
assign out = out_temp; 
 
always @ (posedge clk) 
begin 
 if (reset) 
 count<=2; 
 else if (volup) 
 if (count == 3) 
  count<=count; 
 else count<=count+1; 
 else if (voldown) 
 begin 
  if (count == 0) 
   count<=count; 
  else 
  count<=count-1; 
 end  
else 
 count<=count; 
end 
 
endmodule 
 
// This was just a test module for integration.  An approximate copy of 
//this module appreas in midi_synth.v 
 
module ADSRoutputs(clk, reset, busypiano, busyflute, busyviolin, 
in_piano, in_flute, in_violin,  
enablea, enableb, enablec, endtimea, endtimeb, endtimec, starta, 
startb, startc, out, volcontrol, volup, voldown); 
 
input clk, reset, enablea, enableb, enablec, endtimea, endtimeb, 
endtimec, starta, startb, startc; 
input[7:0] in_piano, in_flute, in_flute; 
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output busypiano, busyflute, busyviolin; 
output[7:0] out; 
wire inter_output_a, inter_output_b, inter_outer_c; 
reg[8:0] result_temp; 
 
// this part changes the output levels from 0-255 to -128-128. converts 
//to 2’s complement 
assign inter_output_a = {~in_piano[7], {~in_piano[7], in_piano[7:1] - 
7'b1000000 } }; 
assign inter_output_b = {~in_flute[7], {~in_piano[7], in_piano[7:1] - 
7'b1000000 } }; 
assign inter_output_c = {~in_violin[7], {~in_violin[7], in_violin[7:1] 
- 7'b1000000 } }; 
 
// this part passes everything through the adsr 
adsrpiano mypiano(clk, reset, inter_output_a, endtimea, starta, 
busypiano, enablea, result_a); 
adsrflute myflute(clk, reset, inter_output_b, endtimeb, startb, 
busyflute, enableb, result_b); 
adsrviolin myviolin(clk, reset, inter_output_c, endtimec, startc, 
busyviolin, enablec, result_c); 
 
wire[11:0] pianovol, flutevol, violinvol; 
input[1:0] volcontrol; 
 
input volup, voldown; 
button volumeup (clk, volup, volup_synch); 
button volumedown (clk, voldown, voldown_synch); 
 
// this part takes the adsr outputs and puts them through volume 
//control 
soundcontrol_piano spiano (clk, reset, volup_synch, voldown_synch, 
result_a, pianovol); 
soundcontrol_violin sviolin (clk, reset, volup_synch, voldown_synch, 
result_c, violinvol); 
soundcontrol_flute sflute (clk, reset, volup_synch, voldown_synch, 
result_b, flutevol); 
 
 
// if the volume control switch is up, then the controlled signals are 
// obtained. If not, then the regular signals are obtained 
 
assign result_temp = (volcontrol) ?  
   pianovol[10:3]+ violinvol[11:4]+flutevol[11:4] : 
     result_a + result_b + result_c; 
 
assign out = {~result_temp[8], result_temp[7:1]}; 
 
 
endmodule 
 
Waveform .mif files: 
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// This .mif file is for violin only. In order to save space, I 
//(Valerie) did not include the other .mif files. If this is really 
//crucial, I can attach them separately.  Thank you. 
 
WIDTH=8; 
DEPTH=256; 
 
ADDRESS_RADIX = HEX;  % Address and data radixes are optional, default 
is hex % 
DATA_RADIX = DEC;   
 
CONTENT BEGIN 
00: 128; 
01:147; 
02:165; 
03:183; 
04:199; 
05:213; 
06:226; 
07:236; 
08:245; 
09:250; 
0A:254; 
0B:255; 
0C:255; 
0D:254; 
0E:251; 
0F:247; 
10:238; 
11:233; 
12:229; 
13:225; 
14:221; 
15:218; 
16:215; 
17:213; 
18:210; 
19:209; 
1A:206; 
1B:204; 
1C:202; 
1D:198; 
1E:194; 
1F:190; 

20:184; 
21:178; 
22:172; 
23:165; 
24:158; 
25:151; 
26:144; 
27:138; 
28:133; 
29:129; 
2A:126; 
2B:124; 
2C:124; 
2D:125; 
2E:127; 
2F:131; 
30:135; 
31:140; 
32:145; 
33:150; 
34:154; 
35:158; 
36:161; 
37:162; 
38:163; 
39:161;  
3A:159; 
3B:155; 
3C:150; 
3D:144; 
3E:137; 
3F:129; 

40:122; 
41:115; 
42:109; 
43:103; 
44:99; 
45:96; 
46:94; 
47:93; 
48:95; 
49:97; 
4A:100; 
4B:105; 
4C:109; 
4D:114; 
4E:119; 
4F:124; 
50:127; 
51:130; 
52:132; 
53:132; 
54:131; 
55:129; 
56:125; 
57:120; 
58:114; 
59:108; 
5A:101; 
5B:94; 
5C:87; 
5D:80; 
5E:74; 
5F:68; 

60:63; 
61:59; 
62:56; 
63:53; 
64:50; 
65:48; 
66:46; 
67:44; 
68:42; 
69:40; 
6A:37; 
6B:33; 
6C:29; 

6D:25; 
6E:20; 
6F:15; 
70:11; 
71:6; 
72:3; 
73:1; 
74:0; 
75:1; 
76:4; 
77:9;  
78:16;  
79:26; 

7A:37; 
7B:51; 
7C:67; 
7D:84; 
7E:102;  
7F:120;  
80:139; 
81:158; 
82:176; 
83:193; 
84:208; 
85:221; 
86:232; 
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87:242; 
88:248; 
89:253; 
8A:255; 
8B:255; 
8C:255; 
8D:252; 
8F:249; 
90:245; 
91:240; 
92:235; 
93:231; 
94:226; 
95:222; 
96:219; 
97:216; 
98:213; 
99:211; 
9A:209; 
9B:207; 
9C:205; 
9D:203; 
9E:200; 
9F:196; 
A0:192; 
A1:187; 
A2:181; 
A3:174; 
A4:168; 
A5:161; 
A6:154; 
A7:147; 
A8:141; 
A9:135; 
AA:130; 
AB:127; 
AC:125; 
AD:124; 
AE:125; 
AF:126; 
B0:129; 
B1:133; 
B2:138; 
B3:143; 
B4:148; 
B5:152; 
B6:156; 
B7:160; 
B8:162; 
B9:163; 
BA:162; 
BB:160; 
BC:157; 
BD:152; 
BE:146; 
BF:140; 
C0:132; 

C1:125; 
C2:118; 
C3:111; 
C4:105; 
C5:100; 
C6:97; 
C7:94; 
C8:93; 
C9:94; 
CA:96; 
CB:99; 
CC:103; 
CD:107; 
CE:112; 
CF:117; 
D0:122; 
D1:126; 
D2:129; 
D3:131; 
D4:132; 
D5:131; 
D6:130; 
D7:126; 
D8:122; 
D9:117; 
DA:111; 
DB:104; 
DC:97; 
DD:90; 
DE:83; 
DF:77; 
E0:71; 
E1:65; 
E2:61; 
E3:57;  
E4:54; 
E5: 51; 
E6: 49; 
E7: 47; 
E8: 45; 
E9: 43; 
EA: 41; 
EB: 38; 
EC: 35;  
ED: 31; 
EE: 26; 
EF: 22; 
F0: 17; 
F1: 12; 
F2: 8; 
F3: 4; 
F4: 2; 
F5: 0; 
F6: 0; 
F7: 2; 
F8: 7; 
F9: 13; 

FA: 21; 
FB: 32; 
FC: 45; 
FD: 60; 
FE: 77; 
FF: 94; 
 
end; 
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