Problem Set 8 Solutions

Problem 8-1. Modular Operations

For this problem, do not assume that arithmetic operations have O(1) cost. You may assume that the operations $(a \cdot b)$ and $(a \mod b)$ may be done in time $O(\log a \log b)$. On inputs of length n, we define an algorithm to be *polynomial-time* if it runs in $O(n^k)$ time for some constant k.

(a) Given a, b, c and prime p, give a polynomial-time algorithm that computes $a^{b^c} \mod p$. Note that the size of the input is $\log a + \log b + \log c + \log p$.

Solution: By Fermat's little theorem, $(a^{p-1} \mod p) = 1$. Therefore:

$$a^{b^c} \mod p = a^{b^c \mod (p-1)} \mod p$$

- 1. First compute $(b \mod (p-1))$ in time $O(\log b \log p)$.
- 2. Now compute $(b^c \mod (p-1))$ using repeated squaring. This will consist of $O(\log c)$ multiplications of numbers of size at most p. So, each multiplication will take $O(\log^2 p)$ time, for a total of $O(\log c \log^2 p)$ time.
- 3. Compute $(a \mod p)$ in time $O(\log a \log p)$.
- 4. Note that $(b^c \mod (p-1)) < p$. Compute $(a^{b^c} \mod p)$ using repeated squaring in time $O(\log p \log^2 p) = O(\log^3 p)$.

The total running time is $O(\log b \log p + \log c \log^2 p + \log a \log p + \log^3 p)$. This is upper bounded by $O(n^3)$, where *n* is the size of the input.

(b) Given two integers, a and b, give a polynomial-time algorithm to find the closest integer to $\sqrt[b]{a}$.

Solution: The closest integer to $\sqrt[b]{a}$ is an integer less than *a*. So we can search in the set $\{1, 2, \ldots, a-1\}$ to find it. In order to do this efficiently we use binary search. The following procedure checks if *a* has a *b*-root in the integer interval $[x \ldots y]$ FIND-ROOT-IN-INTERVAL(a, b, x, y)

- 1. Start with z = (y x)/2 and check if $z^b = a$ if so return z else continue.
- 2. If $z^b < a$ but $(z+1)^b > a$ then return the closest between z and z+1 else continue
- 3. If $z^b < a$ call FIND-ROOT-IN-INTERVAL(a, b, z, y)else call FIND-ROOT-IN-INTERVAL(a, b, x, z)

The running time of the above procedure is $O(\log(y - x) \log b(\log a)^2)$. This is because we try only $\log(y - x)$ possible candidates and for each of them we perform $\log b$ multiplications (to raise them to the *b*-power using repeated squaring). Each multiplication takes $O((\log a)^2)$ time because all numbers are less than *a*. To find the *b*-root of *a* we have to call the procedure FIND-ROOT(a, b) =FIND-ROOT-IN-INTERVAL(a, b, 1, a) which takes $O((\log a)^3 \log b)$ time.

(c) Given an integer x, give a polynomial-time algorithm to determine if x is a power, i.e. if there exists integers, $a, b \neq 1$ such that x can be written as $x = a^b$. Hint: Use part (b).

Solution:

Notice that the algorithm in part (b) can be modified so that line 1 outputs not only z but even the statement "a is a pure power"

If x is a pure power (i.e. can be written as $x = a^b$) then $b = \log_a x \le \log x$. So it is enough to run the procedure FIND-ROOT(x, b) for each possible $b \le \log x$. The running time is $O((\log x)^5)$

Problem 8-2. Chinese Remainder Theorem

Given integers p, q, n = pq, where p and q are prime, there exists a 1-1 and onto mapping between \mathbb{Z}_n^* and $(\mathbb{Z}_p^*, \mathbb{Z}_q^*)$, which is quite useful. Let's explore it. The mapping is $f(x) = (x \mod p, x \mod q)$. You may assume that the operations $(a \cdot b)$ and $(a \mod b)$ may be done in time $O(\log a \log b)$.

(a) Give an algorithm to compute x given f(x), p, q.

Solution: Given input (r, s), use the Euclidian algorithm to find $y = q^{-1} \mod p$ and $z = p^{-1} \mod q$. Output $rqy + spz \mod n$. Note that $rqy + spz \equiv rqy \equiv r \mod p$ and $rqy + spz \equiv spz \equiv s \mod p$. Since part (a) is 1-to-1, this mapping is necessarily 1-to-1.

(b) Now, let us define the following multiplication operator: $(r, s) \odot (t, u) = (rt \mod p, su \mod q)$. Show that it is closed under $(\mathbb{Z}_p^*, \mathbb{Z}_q^*)$.

Solution: Since multiplication is closed over \mathbb{Z}_p^* , $rt \mod p \in \mathbb{Z}_p^*$. Similarly, $su \mod q \in \mathbb{Z}_q^*$.

- (c) Ben Bitdiddle designs a new multiplication unit, called the B-Diddy, that multiplies two numbers $x, y \in \mathbb{Z}_n^*$ using the following algorithm:
 - 1. Map x and y into pairs $(r, s), (t, u) \in (\mathbb{Z}_p^*, \mathbb{Z}_q^*)$.
 - 2. Compute $(r, s) \odot (t, u) = (v, w)$.

3. Map (v, w) back into $z \in \mathbb{Z}_n^*$.

Analyze the B-Diddy's runtime and compare it to standard multiplication over \mathbb{Z}_n^* . Which is better to use?

Solution:

Multiplying two numbers in \mathbb{Z}_n^* takes time $O((\log n)^2) = O((\log p + \log q)^2)$. Step 1: $O(\log n \log p + \log n \log q) = O(\log^2 n)$. Step 2: $O(\log^2 p + \log^2 q) = O(\log^2 n)$ Step 3: Running the Euclidian algorithm takes $O(\log^2 p + \log^2 q) = O(\log^2 n)$. Computing rqy and spz take time $O(\log n \log p + \log n \log q) = O(\log^2 n)$. Assuming w.l.o.g. that p > q, adding rqy and spz produces a number of size $\log n + \log p$ and takes time $O(\log n + \log p)$. Taking the modulo of this value takes time $O(\log^2 n)$.

Thus, the B-Diddy takes the same order of complexity as standard multiplication.

(d) Suppose you are given inputs p, q, n and $(x^3 \mod p, x^3 \mod q)$. Give an algorithm to compute $x \mod n$. You may assume that $gcd(3, \phi(n)) = 1$.

Solution:

Perform RSA decryption: Compute d such that $3d \equiv 1 \mod \phi(n)$. Find $x^3 \mod n$ using part (b). Compute $x^{3d} = x^{k\phi(n)+1} = x \mod n$.

Problem 8-3. Snowball Throwing

Several 6.046 students hold a team snowball throwing contest. Each student throws a snowball with a distance in the range from 0 to 10n. Let M be the set of distances thrown by males and F be the set of distances thrown by females. You may assume that the distance thrown by each student is unique and is an integer. Define a team score to be the combination of one male and one female throw.

Give an $O(n \log n)$ algorithm to determine every possible team score, as well as how many teams could achieve a particular score. This multi-set of values is called a *cartesian sum* and is defined as:

$$C = \{m + f : m \in M \text{ and } f \in F\}$$

Solution:

Represent M and F as polynomials of degree 10n as follows:

$$M(x) = x^{a_1} + x^{a_2} + \ldots + x^{a_n}, F(x) = x^{b_1} + x^{b_2} + \ldots + x^{b_n}$$

Multiply M and F in time $\Theta(n \log n)$ to obtain a coefficient representation c_0, c_1, \ldots, c_{2n} . In other words $C(x) = c_0 + c_1 x + c_2 x^2 + \ldots + c_{2n} x^{2n}$. Each pair a_i, b_j will account for one term $x^{a_i} x^{b_j} = x^{a_i+b_j} = x^k$. Therefore, c_k will be the number of such pairs $a_i + b_j = k$.

Problem 8-4. Comparing Polynomials

Two single variable degree-*d* polynomials, *P* and *Q*, with coefficients from \mathbb{Z}_p are said to be identical if P(x) = Q(x) for all $x \in \mathbb{Z}_p$. Suppose you want to determine if two degree-*d* polynomials, *F*, *G* with coefficients in \mathbb{Z}_p are identical, where p > 2d. However, you are not explicitly given *F* or *G*. Rather, you are given two black boxes, which on any input $x \in \mathbb{Z}_p$ return F(x) and G(x), respectively.

Give an efficient Monte-Carlo algorithm to determine if F and G are identical. If F = G, your algorithm should output the correct answer with probability 1. If $F \neq G$, your algorithm should output the correct answer with probability at least 3/4.

You may use the following fact: A degree-d non-zero polynomial has at most d values of x for which it evaluates to 0.

Solution: If *F* and *G* are the same polynomials, then F - G is the zero polynomial. Otherwise, it is 0 for at most *d* values of *x* in \mathbb{Z}_p . Thus, if $F \neq G$, and we choose a random point *x* in \mathbb{Z}_p , then the probability that F(x) - G(x) = 0 is at most d/p < 1/2.

So our algorithm is as follows: Pick two random points x and y in \mathbb{Z}_p and evaluate F(x) - G(x) and F(y) - G(y). If both answers are 0, we output "F = G. Otherwise, we output $F \neq G$.

Note that if F = G, then out algorithm always outputs the correct answer. If $F \neq G$, then F(x) - G(x) = 0 for a random x in \mathbb{Z}_p with probability at most 1/2, and F(y) - G(y) = 0 with probability at most 1/2 so we output F = G, i.e. the wrong answer, with probability at most 1/4.