
Introduction to Algorithms December 6, 2003
Massachusetts Institute of Technology 6.046J/18.410J
Professors Shafi Goldwasser and Silvio Micali Handout 29

Problem Set 8 Solutions

Problem 8-1. Modular Operations

For this problem, do not assume that arithmetic operations have
�������

cost. You may assume that
the operations

���
	����
and

����
��������
may be done in time

���������������������
. On inputs of length � , we

define an algorithm to be polynomial-time if it runs in
��� ��� � time for some constant � .

(a) Given
�! "�# "$

and prime % , give a polynomial-time algorithm that computes
�'&)(*
���� % .

Note that the size of the input is
�+���,�.-/�+�0���1-/�����,$2-/����� % .

Solution: By Fermat’s little theorem,
���4365!7*
8�9� % �,:;�

. Therefore:

� & (
8��� % :<� & (�=?>A@CB 365!7�D
8��� %
1. First compute

���E
8�9�F� %�G �#�H� in time
���I�+���2�J�+��� % � .

2. Now compute
���LKM
����N� %OG �#�H�

using repeated squaring. This will consist of���I�+����$P�
multiplications of numbers of size at most % . So, each multiplication

will take
�����+�0�0Q % � time, for a total of

����������$R�+�0�SQ % � time.

3. Compute
���T
8�9� % � in time

�����+�0�����+�0� % � .
4. Note that

���LK1
8�9�F� %�G �#�H�VU % . Compute
��� & (*
���� % � using repeated squaring

in time
�����+�0� % ����� Q % ��:<�����+�0��W % � .

The total running time is
�����+�0���X�+�0� % -Y�+���,$R����� Q % -Y�+���,�,�+��� % -Z������W % � . This is

upper bounded by
��� � W � , where � is the size of the input.

(b) Given two integers,
�

and
�
, give a polynomial-time algorithm to find the closest

integer to [\ � .
Solution: The closest integer to [\ � is an integer less than

�
. So we can search in the

set] �� L^9 6_`_6_P a� G �0b to find it. In order to do this efficiently we use binary search. The
following procedure checks if

�
has a

�
-root in the integer interval ced _6_Af�g

FIND-ROOT-IN-INTERVAL
���! "�� d afh�

1. Start with i :j��f Gkd �Hl0^ and check if i &2:Z� if so return i else continue.

2. If i &EUm� but
� i -n���o&,pq� then return the closest between i and i -n� else continue

3. If i &EUq� call FIND-ROOT-IN-INTERVAL
���r a�� i af'�

else call FIND-ROOT-IN-INTERVAL
���! "�� d i �

2 Handout 29: Problem Set 8 Solutions

The running time of the above procedure is
���I�+���'��f Gsd �h�+�0���4�I�+���,��� Q � . This is be-

cause we try only
�+�0�r��f Gmd � possible candidates and for each of them we perform�����,�

multiplications (to raise them to the
�
-power using repeated squaring). Each

multiplication takes
���H�I�+���*�9� Q �

time because all numbers are less than
�
.

To find the
�
-root of

�
we have to call the procedure FIND-ROOT

���! "���t:
FIND-ROOT-

IN-INTERVAL
���! "�# #�� "���

which takes
���A�������2��� W ���������

time.

(c) Given an integer d , give a polynomial-time algorithm to determine if d is a power, i.e.
if there exists integers,

�! "��u:v�
such that d can be written as d :w� &

. Hint: Use part
(b).

Solution:
Notice that the algorithm in part (b) can be modified so that line 1 outputs not only i
but even the statement “

�
is a pure power”

If d is a pure power (i.e. can be written as d :x� &
) then

�y:z�+�0�S{ d}| �+��� d . So it is
enough to run the procedure FIND-ROOT

� d "��� for each possible
� | ����� d .

The running time is
���H�I�+��� d �o~��

Problem 8-2. Chinese Remainder Theorem

Given integers % a�9 � : % � , where % and
�

are prime, there exists a 1-1 and onto mapping between�E�� and
� �E�3 �E�� � , which is quite useful. Let’s explore it. The mapping is � � d �,:z� d
8��� % d
8����0�

. You may assume that the operations
���y	��P�

and
���T
8�9�����

may be done in time
���I�+�����,�+�������

.

(a) Give an algorithm to compute d given � � d �L % a� .
Solution: Given input

���� L���
, use the Euclidian algorithm to find

f8:��95!7*
8��� % andi : % 5!7
8�9��� . Output
�4��fT-Y� %!i
8�9� � . Note that

�4�4f�-Y� %riF� ���4f � �

���� %
and

���4f
-/� %ri�� � %ri�� ��
8�9� % . Since part (a) is 1-to-1, this mapping is necessarily
1-to-1.

(b) Now, let us define the following multiplication operator:
���� L���,�����L a�X��:������*
8�9�

% "�#��
�������� . Show that it is closed under
� � �3 � �� � .

Solution: Since multiplication is closed over
� �3 , ���M
���� %�� � �3 . Similarly,

�#��
����� � � �� .
(c) Ben Bitdiddle designs a new multiplication unit, called the B-Diddy, that multplies

two numbers d af � � �� using the following algorithm:

1. Map d and
f

into pairs
���� L���L ��I�L a�X� � � � �3 � �� � .

2. Compute
���� L���?�����L a�X�2:j���r a�
�

.

Handout 29: Problem Set 8 Solutions 3

3. Map
���r a�
�

back into i�� � �� .
Analyze the B-Diddy’s runtime and compare it to standard multiplication over

�t�� .
Which is better to use?

Solution:
Multiplying two numbers in

� �� takes time
���H�I�+��� � � Q �2:����A���+�0� % -}�+���2�0� Q � .

Step 1:
��������� � �+�0� % -}�+��� � ���������2:���������� Q � � .

Step 2:
����������Q % -}�+���0QJ�0�2:������+�0�0Q � �

Step 3: Running the Euclidian algorithm takes
���I�+��� Q % -k�+��� Q �0��:<���I�+��� Q � � . Com-

puting
���4f

and
� %ri take time

���I�+��� � ����� % -��+�0� � �����2�0�n:����I�+��� Q � � . Assuming
w.l.o.g. that % p�� , adding

���4f
and

� %ri produces a number of size
����� � -s�+�0� % and

takes time
��������� � -/����� % � . Taking the modulo of this value takes time

��������� Q � � .
Thus, the B-Diddy takes the same order of complexity as standard multiplication.

(d) Suppose you are given inputs % a�� � and
� d W
���� % d W
������0� . Give an algorithm to

compute d
���� � . You may assume that � $��J���h L�M� � �H�*:��
.

Solution:
Perform RSA decryption: Compute

�
such that

�0� � �t
����8�1� � � . Find d W
8��� �
using part (b). Compute d W � : d �a¡ B � D£¢X7 : d
���� � .

Problem 8-3. Snowball Throwing

Several 6.046 students hold a team snowball throwing contest. Each student throws a snowball
with a distance in the range from 0 to

�#¤ � . Let ¥ be the set of distances thrown by males and ¦ be
the set of distances thrown by females. You may assume that the distance thrown by each student
is unique and is an integer. Define a team score to be the combination of one male and one female
throw.

Give an
��� � �+�0� � � algorithm to determine every possible team score, as well as how many teams

could achieve a particular score. This multi-set of values is called a cartesian sum and is defined
as: § :]#¨ - �ª©S¨«�O¥ and �ª�¬¦ b

Solution:

Represent ¥ and ¦ as polynomials of degree
�#¤ � as follows:

¥ � d �,: d
{"­ - d

{H® -Z_6_`_�- d
{o¯ ¦ � d �,: d &

­ - d &
® -Z_6_6_#- d &

¯

Multiply ¥ and ¦ in time ° � � ����� � � to obtain a coefficient representation
$6±# a$ 7 `_6_6_` a$ Q � . In

other words
§ � d �²:³$�±�-Z$ 7 d -Z$ Q d Q -�_6_6_S-Y$ Q � d Q � . Each pair

�S´ "��µ
will account for one termd

{o¶
d &¸· : d

{A¶ ¢'&¸· : d � . Therefore,
$ � will be the number of such pairs

�¹´9-º��µ»: � .

4 Handout 29: Problem Set 8 Solutions

Problem 8-4. Comparing Polynomials

Two single variable degree-
�

polynomials, ¼ and ½ , with coefficients from
� 3 are said to be iden-

tical if ¼ � d �,: ½ � d � for all d¬� � 3 . Suppose you want to determine if two degree-
�

polynomials,¦ "¾ with coefficients in
� 3 are identical, where % p<^0� . However, you are not explicitly given ¦

or
¾

. Rather, you are given two black boxes, which on any input d/� � 3 return ¦ � d � and
¾�� d � ,

respectively.

Give an efficient Monte-Carlo algorithm to determine if ¦ and
¾

are identical. If ¦ :¿¾
, your

algorithm should output the correct answer with probability 1. If ¦ u:x¾
, your algorithm should

output the correct answer with probability at least
�Sl�À

.

You may use the following fact: A degree-
�

non-zero polynomial has at most
�

values of d for
which it evaluates to 0.

Solution: If ¦ and
¾

are the same polynomials, then ¦<G ¾ is the zero polynomial. Otherwise, it
is 0 for at most

�
values of d in

� 3 . Thus, if ¦ u:;¾
, and we choose a random point d in

� 3 , then
the probability that ¦ � d � G ¾�� d ��:Z¤ is at most

��l % U���l�^ .
So our algorithm is as follows: Pick two random points d and

f
in
� 3 and evaluate ¦ � d � G ¾�� d �

and ¦ ��fh� G ¾���fh� . If both answers are 0, we output “ ¦ :�¾ . Otherwise, we output ¦ u:�¾
.

Note that if ¦ : ¾
, then out algorithm always outputs the correct answer. If ¦ u: ¾

, then¦ � d � G ¾�� d �Á:w¤
for a random d in

� 3 with probability at most
��l�^

, and ¦ ��fh� G ¾��If'��:w¤
with

probability at most
��l�^

so we output ¦ :<¾
, i.e. the wrong answer, with probability at most

��l�À
.

