Problem Set 8 Solutions

Problem 8-1. Modular Operations

For this problem, do not assume that arithmetic operations have $O(1)$ cost. You may assume that the operations $(a \cdot b)$ and $(a \bmod b)$ may be done in time $O(\log a \log b)$. On inputs of length n, we define an algorithm to be polynomial-time if it runs in $O\left(n^{k}\right)$ time for some constant k.
(a) Given a, b, c and prime p, give a polynomial-time algorithm that computes $a^{b^{c}} \bmod p$. Note that the size of the input is $\log a+\log b+\log c+\log p$.

Solution: By Fermat's little theorem, $\left(a^{p-1} \bmod p\right)=1$. Therefore:

$$
a^{b^{c}} \bmod p=a^{b^{c} \bmod (p-1)} \bmod p
$$

1. First compute $(b \bmod (p-1))$ in time $O(\log b \log p)$.
2. Now compute $\left(b^{c} \bmod (p-1)\right)$ using repeated squaring. This will consist of $O(\log c)$ multiplications of numbers of size at most p. So, each multiplication will take $O\left(\log ^{2} p\right)$ time, for a total of $O\left(\log c \log ^{2} p\right)$ time.
3. Compute $(a \bmod p)$ in time $O(\log a \log p)$.
4. Note that $\left(b^{c} \bmod (p-1)\right)<p$. Compute $\left(a^{b^{c}} \bmod p\right)$ using repeated squaring in time $O\left(\log p \log ^{2} p\right)=O\left(\log ^{3} p\right)$.
The total running time is $O\left(\log b \log p+\log c \log ^{2} p+\log a \log p+\log ^{3} p\right)$. This is upper bounded by $O\left(n^{3}\right)$, where n is the size of the input.
(b) Given two integers, a and b, give a polynomial-time algorithm to find the closest integer to $\sqrt[b]{a}$.

Solution: The closest integer to $\sqrt[b]{a}$ is an integer less than a. So we can search in the set $\{1,2, \ldots, a-1\}$ to find it. In order to do this efficiently we use binary search. The following procedure checks if a has a b-root in the integer interval $[x \ldots y]$
Find-Root-In-Interval (a, b, x, y)

1. Start with $z=(y-x) / 2$ and check if $z^{b}=a$ if so return z else continue.
2. If $z^{b}<a$ but $(z+1)^{b}>a$ then return the closest between z and $z+1$ else continue
3. If $z^{b}<a$ call Find-Root-In-Interval (a, b, z, y) else call Find-Root-In-Interval (a, b, x, z)

The running time of the above procedure is $O\left(\log (y-x) \log b(\log a)^{2}\right)$. This is because we try only $\log (y-x)$ possible candidates and for each of them we perform $\log b$ multiplications (to raise them to the b-power using repeated squaring). Each multiplication takes $O\left((\log a)^{2}\right)$ time because all numbers are less than a.
To find the b-root of a we have to call the procedure $\operatorname{Find-Root~}(a, b)=$ Find-Root-In-Interval $(a, b, 1, a)$ which takes $O\left((\log a)^{3} \log b\right)$ time.
(c) Given an integer x, give a polynomial-time algorithm to determine if x is a power, i.e. if there exists integers, $a, b \neq 1$ such that x can be written as $x=a^{b}$. Hint: Use part (b).

Solution:

Notice that the algorithm in part (b) can be modified so that line 1 outputs not only z but even the statement " a is a pure power"
If x is a pure power (i.e. can be written as $x=a^{b}$) then $b=\log _{a} x \leq \log x$. So it is enough to run the procedure $\operatorname{Find}-\operatorname{Root}(x, b)$ for each possible $b \leq \log x$.
The running time is $O\left((\log x)^{5}\right)$

Problem 8-2. Chinese Remainder Theorem
Given integers $p, q, n=p q$, where p and q are prime, there exists a 1-1 and onto mapping between \mathbb{Z}_{n}^{*} and $\left(\mathbb{Z}_{p}^{*}, \mathbb{Z}_{q}^{*}\right)$, which is quite useful. Let's explore it. The mapping is $f(x)=(x \bmod p, x \bmod$ $q)$. You may assume that the operations $(a \cdot b)$ and $(a \bmod b)$ may be done in time $O(\log a \log b)$.
(a) Give an algorithm to compute x given $f(x), p, q$.

Solution: Given input (r, s), use the Euclidian algorithm to find $y=q^{-1} \bmod p$ and $z=p^{-1} \bmod q$. Output $r q y+s p z \bmod n$. Note that $r q y+s p z \equiv r q y \equiv r \bmod p$ and $r q y+s p z \equiv s p z \equiv s \bmod p$. Since part (a) is 1-to-1, this mapping is necessarily 1-to-1.
(b) Now, let us define the following multiplication operator: $(r, s) \odot(t, u)=(r t \bmod$ $p, s u \bmod q)$. Show that it is closed under $\left(\mathbb{Z}_{p}^{*}, \mathbb{Z}_{q}^{*}\right)$.

Solution: Since multiplication is closed over \mathbb{Z}_{p}^{*}, rt $\bmod p \in \mathbb{Z}_{p}^{*}$. Similarly, su \bmod $q \in \mathbb{Z}_{q}^{*}$.
(c) Ben Bitdiddle designs a new multiplication unit, called the B-Diddy, that multplies two numbers $x, y \in \mathbb{Z}_{n}^{*}$ using the following algorithm:

1. Map x and y into pairs $(r, s),(t, u) \in\left(\mathbb{Z}_{p}^{*}, \mathbb{Z}_{q}^{*}\right)$.
2. Compute $(r, s) \odot(t, u)=(v, w)$.
3. Map (v, w) back into $z \in \mathbb{Z}_{n}^{*}$.

Analyze the B-Diddy's runtime and compare it to standard multiplication over \mathbb{Z}_{n}^{*}. Which is better to use?

Solution:

Multiplying two numbers in \mathbb{Z}_{n}^{*} takes time $O\left((\log n)^{2}\right)=O\left((\log p+\log q)^{2}\right)$.
Step 1: $O(\log n \log p+\log n \log q)=O\left(\log ^{2} n\right)$.
Step 2: $O\left(\log ^{2} p+\log ^{2} q\right)=O\left(\log ^{2} n\right)$
Step 3: Running the Euclidian algorithm takes $O\left(\log ^{2} p+\log ^{2} q\right)=O\left(\log ^{2} n\right)$. Computing $r q y$ and $s p z$ take time $O(\log n \log p+\log n \log q)=O\left(\log ^{2} n\right)$. Assuming w.l.o.g. that $p>q$, adding $r q y$ and $s p z$ produces a number of $\operatorname{size} \log n+\log p$ and takes time $O(\log n+\log p)$. Taking the modulo of this value takes time $O\left(\log ^{2} n\right)$. Thus, the B-Diddy takes the same order of complexity as standard multiplication.
(d) Suppose you are given inputs p, q, n and $\left(x^{3} \bmod p, x^{3} \bmod q\right)$. Give an algorithm to compute $x \bmod n$. You may assume that $\operatorname{gcd}(3, \phi(n))=1$.

Solution:

Perform RSA decryption: Compute d such that $3 d \equiv 1 \bmod \phi(n)$. Find $x^{3} \bmod n$ using part (b). Compute $x^{3 d}=x^{k \phi(n)+1}=x \bmod n$.

Problem 8-3. Snowball Throwing

Several 6.046 students hold a team snowball throwing contest. Each student throws a snowball with a distance in the range from 0 to $10 n$. Let M be the set of distances thrown by males and F be the set of distances thrown by females. You may assume that the distance thrown by each student is unique and is an integer. Define a team score to be the combination of one male and one female throw.
Give an $O(n \log n)$ algorithm to determine every possible team score, as well as how many teams could achieve a particular score. This multi-set of values is called a cartesian sum and is defined as:

$$
C=\{m+f: m \in M \text { and } f \in F\}
$$

Solution:

Represent M and F as polynomials of degree $10 n$ as follows:

$$
M(x)=x^{a_{1}}+x^{a_{2}}+\ldots+x^{a_{n}}, F(x)=x^{b_{1}}+x^{b_{2}}+\ldots+x^{b_{n}}
$$

Multiply M and F in time $\Theta(n \log n)$ to obtain a coefficient representation $c_{0}, c_{1}, \ldots, c_{2 n}$. In other words $C(x)=c_{0}+c_{1} x+c_{2} x^{2}+\ldots+c_{2 n} x^{2 n}$. Each pair a_{i}, b_{j} will account for one term $x^{a_{i}} x^{b_{j}}=x^{a_{i}+b_{j}}=x^{k}$. Therefore, c_{k} will be the number of such pairs $a_{i}+b_{j}=k$.

Problem 8-4. Comparing Polynomials
Two single variable degree- d polynomials, P and Q, with coefficients from \mathbb{Z}_{p} are said to be identical if $P(x)=Q(x)$ for all $x \in \mathbb{Z}_{p}$. Suppose you want to determine if two degree- d polynomials, F, G with coefficients in \mathbb{Z}_{p} are identical, where $p>2 d$. However, you are not explicitly given F or G. Rather, you are given two black boxes, which on any input $x \in \mathbb{Z}_{p}$ return $F(x)$ and $G(x)$, respectively.
Give an efficient Monte-Carlo algorithm to determine if F and G are identical. If $F=G$, your algorithm should output the correct answer with probability 1 . If $F \neq G$, your algorithm should output the correct answer with probability at least $3 / 4$.
You may use the following fact: A degree- d non-zero polynomial has at most d values of x for which it evaluates to 0 .

Solution: If F and G are the same polynomials, then $F-G$ is the zero polynomial. Otherwise, it is 0 for at most d values of x in \mathbb{Z}_{p}. Thus, if $F \neq G$, and we choose a random point x in \mathbb{Z}_{p}, then the probability that $F(x)-G(x)=0$ is at most $d / p<1 / 2$.
So our algorithm is as follows: Pick two random points x and y in \mathbb{Z}_{p} and evaluate $F(x)-G(x)$ and $F(y)-G(y)$. If both answers are 0 , we output " $F=G$. Otherwise, we output $F \neq G$.
Note that if $F=G$, then out algorithm always outputs the correct answer. If $F \neq G$, then $F(x)-G(x)=0$ for a random x in \mathbb{Z}_{p} with probability at most $1 / 2$, and $F(y)-G(y)=0$ with probability at most $1 / 2$ so we output $F=G$, i.e. the wrong answer, with probability at most $1 / 4$.

