
Introduction to Algorithms November 29, 2003
Massachusetts Institute of Technology 6.046J/18.410J
Professors Shafi Goldwasser and Silvio Micali Handout 27

Problem Set 7 Solutions

Problem 7-1. Shortest Paths

Consider a given directed weighted graph
� � �������
	

in which all edge weights are positive.
Suppose that you have already computed a distance matrix � , where ���� � ������������	

is the length of
the shortest path from node

�
to node

�
.

(a) Give an � ����	
algorithm that, on input � � �!� "#��$

, finds the length of the shortest path
from � to

$
that passes through both

�
and

"
.

Solution: Return %&(' �)�*� � � �*	,+-���)�!� ".	,+-����"��/$/	0����� � � ".	,+1�*��"#� �*	,+-���)�!��$/	/	
. Running

time is obviously � �2��	
, as we need only look up six values in the matrix � . For

correctness, any � -
$

path that passes through nodes 3 and 4 in that order must consist
of an � - 3 path, a 3 - 4 path, and a 4 -

$
path; the shortest � -

$
path passing through 3 and

4 must consist of the shortest � - 3 path, etc. (This is just the fundamental fact about
shortest paths discussed in lecture.) For our problem, the path can pass through

�
and"

in either order, so the shortest such path is just the shorter of the shortest � -
�

-
"
-
$

path and the shortest � -
"
-
�

-
$

path.

(b) Give an � �)56	
algorithm that, on input � and

$
, outputs a list of all vertices

"879�
such

that
"

is on some shortest path from � to
$
.

Solution: The key observation is the following: a node
"

lies on a shortest pash from
� to

$
if and only if

��� � � ".	:+;���)"#��$/	<�=��� � ��$/	 . This is another application of the
fundamental fact about shortest paths. Obviously

��� � ��">	?+@���)"#��$/	BAC��� � ��$/	 —this is
just the triangle inequality—since to be otherwise would contradict the optimality of
the purported shortest � -

$
path. If

��� � � ".	D+E���)"#��$/	F�G��� � ��$/	 , then
"

is on a shortest
� -
$

path since going from � to
$

via
"

is as short as any way of going from � to
$
; the

converse directly follows from the fundamental fact.
Thus the algorithm is simply the following: for each node

"
, add

"
to the list if��� � � ".	H+I���)"#��$/	J�;�*� � ��$/	 . Correctness follows from the above, and the running time

is obviously � �)56	
.

(c) Give an � �)5FK(LNMO5H	
algorithm that, on input � and

$
, outputs a shortest � -

$
path in

�
,

i.e. your algorithm should output a list of vertices � �P"NQR� "TS��VUVUVUW� "YXZ�P$
such that[X

�]\ S �*��" �(^ S_� " � 	O����� � ��$/	 .)
Solution: We use a divide and conquer approach. For a set ` of vertices and two
vertices

�
and

"
, define

FINDPATH(
�!� "#� `)

2 Handout 27: Problem Set 7 Solutions

1. If
�Z�a"

, just return the trivial path
�

.
2. Using the algorithm from part (b), find a list b of all nodes 3 7 ` such that 3 is

on some shortest path from
�

to
"
.

3. Find the median c of b .
4. Partition b into dfe � g 3 7 b e �����?� 3 	ihf�*���!� c 	_j

and k e � g 3 7 b e���)�!� 3 	ml@���)�!� c 	�j
.

5. Return the concatenation of (1) FINDPATH(
�!� c � d), (2) FINDPATH(c ��"#� k) with-

out the initial c .

For the given problem, we return FINDPATH(� ��$_�_�).
First, the running time analysis, which is easy: the recurrence for the running time isn �)56	po�q n �)56rNqN	H+s5t� � ��5FK�LNMO56	

, since d and k both have size at most half of the
size of ` .
For correctness, note that c is one some shortest

�
-
"

path by Part (b). Thus correctness
follows straightforwardly by induction and the fundamental fact. Inductively, we have
a shortest path from

�
to c and a shortest path from c to

"
, where c is on some

shortest path from
�

to
"
. Thus putting these together yields some shortest path from�

to
"
.

Problem 7-2. All-Pairs Shortest Paths

Give an implementation of the FLOYD-WARSHALL algorithm that uses � �)5!u_	
space.

Solution: As it appears in CLRS, the Floyd-Warshall algorithm requires v ��5!w0	
space, since we

compute
�yx X�z�{� for

���|�N�_}-7~gT�N�_q.��UVUVU0� 5�j
. We will show that the following procedure, which simply

drops all the superscripts, is correct, and thus only v ��5!u_	
space is required.

FLOYD-WARSHALL � ���;	
1

5t���Y��� ��� ���
2 � � �
3 for

}�� �
to

5
4 do for

��� �
to

5
5 do for

��� �
to

5
6

� �{� � %&(' ��� �{� ��� � X�+��,X � 	
7 return �

The procedure is correct because any update it makes to the � matrix is made to an entry which will
not affect any other entry in that

}
-loop. In other words, during the

}
-loop, entry

� ��� is updated by
setting

� �{� � %&(' ��� �{� ��� � X�+��,X � 	 . This entry
� �{� for

���������}
is not used again until

}
is incremented,

i.e. the next
}

-loop. Additionally, during this
}

-loop, entry
� � X is not changed because this would

require that
� � X�l�� � X�+I�,X X

, which only occurs if there is a negative cycle, i.e. if
�.X X

is negative.
Thus, there is no need to distinguish between

�#x X�z� X and
�>x X ^ S�z� X as done in the original algorithm.

Handout 27: Problem Set 7 Solutions 3

Problem 7-3. Transitive Closure

We define a directed graph
� ^ to be edge-parsimonious if among all directed graphs with the

same transitive closure as
� ^ , graph

� ^ has a minimum number of edges. (See CLR pages 632–
633 for a definition of transitive closure.)

Given a directed acyclic graph
�

, give an � ���B��	
algorithm that finds an edge-parsimonious graph� ^ with the same transitive closure as

�
.

Solution: As we will prove, when
�

is a DAG,
� ^ is unique and

� ^i� �
. (Both these facts do

not hold for arbitrary graphs). More specifically, we will show that the edges of
� ^ are exactly:

� ^ �;g.���?��">	m7����
there exists no other path

�
� "
in

��j

Therefore, we want to remove from
�

any edge
�)�!� ".	

that has another (longer) path from
�

to
"
,

and the remaining graph will be
� ^ .

There are several possible � ���{�<�(���<�{	
algorithms that do that, and we describe one of them below.

From the characterization of
� ^ above, we see that an edge

���?��">	�7��
should not be removed if

and only if the longest path from
�

to
"

is of length 1 (the edge itself). Thus, if we find the longest
path between every pair of vertices, we can go over all edges in

�
and remove the redundant

ones. In the following, we find the longest path for each pair by assigning a weight of � �
to every

edge, and running ALL-PAIRS-SHORTEST-PATHS (APSP). (
�

is a DAG so there are no negative
cycles).

FIND-PARSIMONIOUS
�)�
	

1 For every
���?��">	J7��

set
���)�!� ".	�� � �

2 d � �¡ ` ¡����¢� �£	
3

� ^ � ¤
4 For every

���?��">	J7��
5 if d¥� �!� ",��� � � ¦

longest path from
�

to
"

is the edge itself
6 then

� ^ � � ^�§ g.�)�!� ".	�j ¦
add the edge to

� ^
7 return

� ^

Running time: The loops in lines 1, and 4–6 take � �_� �1�{	
. Thus, the APSP is dominating. Note

that since
�

is a DAG, the SINGLE-SOURCE-SHORTEST-PATH can be done in � �_���Z��+a� �1�{	
time,

using topological sort (see CLR). Thus APSP, and therefore FIND-PARSIMONIOUS, can be done
in � ���{�<� uD+��{�Z�����<�{	

.

Correctness

The correctness of the above algorithms relies on the following theorem, which gives the charac-
terization of the unique edge-parsimonious graph

� ^ corresponding to a given DAG
�

.

4 Handout 27: Problem Set 7 Solutions

Theorem 1Let
�¨�©���O����	

be a DAG, and let
� ^ �ª���O��� ^ 	 be any edge-parsimonious graph

that has the same transitive closure as
�

. Then for all
�!� "«79�

,

���?��">	J7�� ^G¬ �)�!� ".	:7����
and there is no path

�
� "
of length

l��
in

�

Proof: We start by observing that since
�

and
� ^ have the same transitive closure, then if one

of them has a path
�
� "

of length
}

, the other must have a path
�
� "

of length
Aa}

. Using this,
we can prove both directions of the theorem.

First assume the righthandside holds.
�)�!� ".	®7¯�

implies that there exists a path
�� "

in
� ^ . If

this path was of length
l;�

then, by the observation above,
�

would also contain a path of lengthl°�
from

�
to

"
, contradicting our assumption. Thus the path in

� ^ is of length 1, i.e.
���?��">	m7�� ^ .

For the other direction, assume
���?��">	B7@� ^ . Then there is a path

�t� "
in

�
of length

}�AP�
.

But if
}�l±�

, using the observation above,
� ^ also has a longer path

��� "
of length

AC�
. Since� ^ must be acyclic, this additional path cannot use the edge

���?��">	
(or else there would be a cycle

on
�

or
"
). It follows that we could safely remove

�)�!� ".	
from

� ^ , without affecting the transitive
closure, since we can always get from

�
to

"
using the alternate path. This is a contradiction to the

minimality of
� ^ . Thus, we must have

}«�C�
, i.e. there is an edge

�)�!� ".	�79�
, and no longer path

exists.

Problem 7-4. Greedy Maximal Matching

Give a linear time algorithm that, on input graph
�²�³����� ��	

, finds a matching with size at least
half that of a maximum matching.

Solution:

MAXIMAL-MATCHING(
�

)
1 ´ � ¤
2 While there is an edge

�)�!� ".	
in

�
so that neither

�
nor

"
is matched in ´ ,

3 Set ´ � ´ § g.�)�!� ".	�j
.

Note that this greedy algorithm may not produce an optimal (i.e., maximum) matching. However,
we will show that the size of ´ is at least half the size of a maximum matching in

�
. Let ´

be the matching output by the MAXIMAL-MATCHING algorithm when run on
�

and let ´ � be a
maximum matching in

�
. We will show that if

� ´ �µh²� ´�� ��rNq , then there exists an edge
�)�!� ".	�7

´a� such that
�

and
"

are unmatched in ´ .

Write the matching ´ as
�2�N��¶HS/	_����q���¶ u 	0��UVUVU��R��}*��¶#X�	 , where

� ´ �µ�²}
. We call an index

�
bad if

either
�

or
¶ � is matched in ´ � . Each edge

������¶ � 	 in ´ � makes at most two indices (
�

and
�
) bad.

Thus if
� ´ �.h±� ´a� ��rNq there must be a good index. And if

�
is a good index, then both endpoints of

the edge
�)���/¶ � 	 are unmatched, as required.

Thus, the MAXIMAL-MATCHING algorithm terminates when
� ´ �.A·� ´°� �{r�q .

Handout 27: Problem Set 7 Solutions 5

Problem 7-5. Flying Friends to San Francisco

You are stuck in San Francisco and you want to fly as many friends as possible from Boston to San
Francisco to celebrate your birthday tommorrow. You have a schedule ¸ of

5
flights available to

you today. An entry ¸�� in this schedule is described by five values ¸D� �·� ��� ��$ � ��� � ��¹ � � 3º� 	 :
» ��� = starting city» $ � = ending city» � � = departure time» ¹ � = arrival time» 3º� = number seats available

Give an efficient algorithm that determines the maximum number of friends you can fly from
Boston to San Francisco in time for your birthday party using the flights from schedule ¸ . You
may assume that all flights run precisely on time, and that transfers between flights are instant (i.e.,
if

¹ � o°� � for flights ¸?� and ¸*� and
$ � � ��� , then it is possible for one student to take flight ¸D� and

then flight ¸µ�). Be sure to argue correctness and analyze the running time of your algorithm.

Hint: You might want to transform the schedule into a max-flow instance and then solve the max-
flow instance. You may use any max-flow algorithm as a black box.

Solution: To solve this problem, we will create an instance
�

of max-flow such that the value of
the maximum flow of

�
is exactly the maximum possible number of students that we can get from

Boston to San Francisco. Furthermore, when we solve this max-flow instance, we will be able to
tell (from the solution) which flights each student should take in order to obtain the maximum. Our
output will take the form of a set of flight itineraries, one for each student.

We must provide a transformation procedure that converts ¸ , the flight schedule, into a directed
graph

�
with capacities (a flow instance) that meets the criteria we describe. The intuition behind

the transformation is to make an edge for each flight with capacity equal to the seat capacity of that
flight, and connect two flights (via an edge of infinite capacity) if it is possible to tranfer from one
to the other.

There are many ways to do this transformation. First we describe a clear but slightly inefficient
transformation (a better one is given at the end):

» First we create an edge in
�

for each flight. Since there are only a limited number of seats
on this flight, we set the capacity of the edge to the number of available seats. Formally, for
each flight ¼�� ��� ��� �/$ � ��� � ��¹ � ��½ � 	 create two vertices

� � and
" � , with an edge between them.

The capacity of this edge is
½ � .» We wish to connect, in

�
, two flights ¼�� and ¼W� if it is possible to transfer from ¼�� to ¼W� . This

is possible if flight ¼�� arrives where flight ¼�� departs, and flight ¼�� arrives before (or exactly
when) flight ¼W� departs. Formally, for each flight pair ¼Y� � ¼W� such that

$ � � ��� and
¹ � oG� � ,

create the edge
��" � � � � 	 with infinite capacity.

6 Handout 27: Problem Set 7 Solutions

» Now we need source and sink vertices representing Boston and San Francisco. The source
should connect to all flights leaving Boston, and the sink should have a connection from all
flights arriving in San Francisco. So, create source node � , and infinite-capacity edges

� � � � � 	
for all

�
such that �V� = Boston. Create sink node

$
and infinite-capacity edges

�)" � ��$/	 for all
�

such that
$ � = San Francisco.

The algorithm performs this transformation, then computes a max-flow on the graph
�

. A unit
of flow on a “flight edge”

�)� � � " � 	 represents a student taking that flight ¼Y� . A unit of flow on a
“transfer edge”

�)" � � � � 	 represents a student transferring from flight ¼Y� to flight ¼W� .
If we wanted the itinerary of each student, we could find a path of unit flow from the source to the
sink, subtracting that unit from each edge on the path, and repeating until there is no more flow left
in the graph.

Correctness. We must prove that the max-flow of
�

represents the way to get the most students
possible from Boston to San Francisco. To show this, we need two claims: (1) Given a feasible
flow with value ¼ , it represents a legal itinerary for ¼ students. (2) If the optimal itinerary gets ¾
students to San Francisco, there exists a feasible flow of value ¾ . Together, these two claims imply
the correctness of the algorithm.

The first claim is clear from the construction. Given a feasible flow with value ¼ , we just described
how to generate a legal itinerary for ¼ students. By the way the flow instance

�
was constructed,

we know this itinerary is legal: Since all flow paths begin at � and end at
$
, this means all generated

itineraries begin in San Francisco and end in Boston. Since no more than
½ � flow paths use a flight

¼�� , we know that at most
½ � of the itineraries use flight ¼�� , and hence no flight is over-booked.

Finally, since the only flow connections between “flight edges” are those representing legal flight
transfers, we know that each itinerary is reasonable (all transfers are possible).

The second claim can be seen as follows. Take the legal itinerary for ¾ students, and create, for
each student’s trip, a path of unit flow in

�
corresponding to that trip. This is certainly a flow of

value ¾ , so we just have to show that it is legal. The only way it could be illegal is if it violates
a capacity constraint of a “flight edge.” However, since the itinerary does not put more than

½ �
students on any flight ¼�� , then no such capacities are violated.

Running time. The first step of the algorithm is the transformation. For each of the
5

flights,
we generate two nodes of

�
, one “flight edge” and at most

5
“connection” edges (at most one for

every other flight). We also generate the source and the sink, and at most
qY5

edges incident to
them. Therefore generating

�
takes time � ��5Hu_	

. We can also see that
�

has � ��5H	
vertices and

� ��5µu_	
edges.

The next step is to compute a maximum flow of
�

. Using Ford-Fulkerson, we can get a max-
flow in time � �����1� ¼6¿ 	 , where ¼6¿ is the value of the maximum flow of

�
. This may not be so

good, since the flow value ¼H¿ might be huge. So, let’s use Edmonds-Karp, which runs in time
� ���{�8��� �1� u�	

. Since
���<�Y� � ��5µu�	

and
�{�Z��� � ��5H	

, this gives a total running time of � �)56À_	
.

We can get this down to � ��5µÁ0	
by using a better transformation. This transformation will only

create � ��5H	
edges in

�
, and so using Edmonds-Karp will only take � ��5HÁ0	

time:

Handout 27: Problem Set 7 Solutions 7

» We create vertices of the form Â city, time Ã . Each vertex represents a departure or arrival
(the city and the time). We create one of these vertices for each unique city/time combination
among all of our flights. For example, if flight A went from Boston to New York, departed at
3pm and arrived at 4pm, there would be two nodes Â Boston, 3pm Ã and Â New York, 4pm Ã .
However, if some other flight leaves Boston at 3pm, we do not create an additional node.

» Now we need “flight edges” as before. For each flight ¼�� �G� ��� ��$ � ��� � ��¹ � � ½ � 	 , create the edge
Â|��� ��� ��Ã�Ä Â $ � ��¹ ��Ã , with capacity

½ � .
» Allowing transfers with a linear number of edges is a bit confusing, but it works if we do
it carefully. The idea is that we hook up all the vertices from the same city into a chain,
in time-order. This chain will contain edges with infinite capacity. So, when a unit of flow
“transfers flights”, it travels down this chain until it gets to the departure time of the flight it
wishes to take. Formally for each city 3 , let b be the set of nodes of the form Â)3 �

time Ã . Sort
b in increasing order by time. For each adjacent pair Â)3 � � Ã � Â)3 � � Ã in this sorted list, make an
edge Â)3 � � ÃJÄ Â)3 � � Ã with infinite capacity.» Finally, we need a source and a sink representing Boston and San Francisco. In fact, we
already have them in the graph. The source is the first vertex in the Boston chain, and the
sink is the last vertex of the San Francisco chain.

This construction may take different amounts of time depending on how you make sure there
are no duplicate city/time nodes, and how you create the “chain” edges. However, even simple
inefficient algorithms are more efficient than the max-flow step, so optimizing the running time of
the transformation is not important. What is important is that we create � ��5H	

edges, which makes
our max-flow computation (and therefore our total computation time) more efficient.

