Introduction to Algorithms September 24, 2003
Massachusetts Institute of Technology 6.046J/18.410J
Professors Shafi Goldwasser and Silvio Micali Handout 9

Problem Set 2 Solutions

Problem 2-1. Goldilocks and the n bears.

Once upon a time, there was a little girl named Goldilocks. She went for a walk in the
forest. Pretty soon, she came upon a house. She knocked and, when no one answered,
she walked right in. At the table in the kitchen, there were three bowls of porridge.
Goldilocks was hungry. She tasted the porridge from the first bowl. “This porridge
is too hot!” she exclaimed. So, she tasted the porridge from the second bowl. “This
porridge is too cold,” she said. So, she tasted the last bowl of porridge. “Ahhh, this
porridge is just right,” she said happily and she ate it all up.

In an unfortunate accident at a laboratory in Building 68, a little girl named Goldilocks wan-
dered into a human cloning machine. As a result, there are now n little Goldilocks (Goldilocks,,
Goldilockss, ...) wandering around the halls of MIT. Because cloning remains an imperfect
technology, each Goldilock; has a temperature preference ¢; distinct from that of all the other
Goldilocks.

Luckily, you also have managed to find n bowls of porridge, where bowl j is kept at temperature b;.
It is a great stroke of fortune that for each Goldilocks;, there is exactly one bowl j so that b; = ¢,
and for each bowl j there is exactly one Goldilocks; whose temperature preference ¢; = b;. That
is, the two sets {b; : 1 < j <n}and {t; : 1 <i < n} are equal. Your job is to match Goldilocks;
to a bowl j of porridge such that b, = ¢,.

When you give bowl j to Goldilocks;, she says:

“This porridge is too hot!” if ¢; < b;
“This porridge is too cold!” if ¢; > b;
“This porridge is just right!” if ¢; = b,.

Call any one such tasting a trial. You may only use trials to get information about temperatures
of the bowls or temperature preferences of the Goldilocks. You may not directly compare the
temperatures of two bowls or the temperature preferences of two Goldilocks.

(@) Give a randomized algorithm for which the expected number of trials is O(nlogn).

Solution: We give an algorithm MATCH-TEMPERATURES(G, B) which takes two

sets G,B C {1,...,n} as input, representing Goldilocks and bowls, respectively,
to be matched. We will only call the procedure with inputs that actually possess a
matching, i.e., that satisfy the precondition G = B. The output of the algorithm will
consist of n distinct pairs (3, j), where Goldilocks; has a temperature preference ¢; that
matches the temperature b; of the bowl j.

Handout 9: Problem Set 2 Solutions

MATCH-TEMPERATURES(G, B)
1 if the sets G and B are empty
2 then return
3 if the sets G and B contain only one element each (say G = {g} and B = {b})
4 then Output “(g,b)”
5 return
6 Choose a random Goldilocks; from G.
7 Compare Goldilocks; to every element of B
8 B_ + bowls in B for which Goldilocks; says “too cold!”
9 B+ + bowls in B for which Goldilocks; says “too hot!”
10 J +the one bowl in B with b; = ¢;
11 Compare bowl j to every element of Goldilocks;
12 G . «+ Goldilocks in G who say “too hot!” when they taste bowl j
13 G- <+ Goldilocks in G who say “too cold!” when they taste bowl j
14 Output “(Goldilocks;, b)”
15 MATCH-TEMPERATURES(G ., B.)
16 MATCH-TEMPERATURES(G, Bs.)

Correctness can be seen as follows. If we pick any Goldilocks; in line 7 then there
will be a matching among the Goldilocks and bowls cooler than ¢; (which are in the
sets G- and B.), and likewise between Goldilocks and bowls hotter than ¢; (which
are in G- and B.). Termination is also easy to see: since |G| + |Gs| < |G] in
every recursion step, the size of the first parameter reduces with every recursive call.
It eventually must reach 0 or 1, in which case the recursion terminates. Correctness is
obvious in these base cases.

What about the running time? The random pick of Goldilocks; in line 7 is what deter-
mines the sets G- and G- into which the input is split. The sizes of these sets can be
any pair from {(i,n — 1 —14) | 0 < i < n — 1}, and every split is equally likely, i.e.
has probability 1/n. The expected runtime E(n) for an input of n Goldilocks/bowls
can therefore be recursively expressed as

for some constant c. For the cn-term just observe that we have one Goldilocks; try all
bowls, and one bowl b tried by every Goldilocks, for a total of 2 trials. The solution to
the recurrence is E(n) = O(nlogn), as discussed in class when deriving the running
time for randomized quicksort. We replicate the analysis here for completeness:

Handout 9: Problem Set 2 Solutions

E(n) = %Z_:(E(i)—l—E(n—l—i))-i—cn
= %nz_:QE(i)-i-cn
= ,
= EZE(Z) +cn

We can multiply both sides by n obtaining:

n-E(n) = 2§:E(i)+cn2 (1)
=0
Thus, we also have:
(n—1)-En-1) = 2"2215(73)4-0(77,—1)2 (2)
=0

If we subtract (2) from (1), then we have:

n-En)—(n—-1)-E(n-1) = 2E(n—1)+2cn—c
We can drop the insignificant ¢ on the right and rearrange the terms. Then we have:
n-En) = (n+1)E(n—1)+ 2cn =

E(n) E(n—-1) 2c
+
n+1 n n+1

Now we have a formula for E(n) in terms of E(n — 1). Thus, we obtain:

E(n)

20 = O(lgn) = E(n) = O(nlgn).

Thus, we have

Handout 9: Problem Set 2 Solutions

(b) Suppose that when you give Goldilocks; bowl j with b; # ¢;, she spits out a spoonful
and says “Yuck!” (without indicating whether it’s too hot or too cold). Give the fastest
algorithm you can to match Goldilocks to bowls in this scenario.

Solution: First let Goldilocks; try every bowl (bowl 1, bowl 2, . . ., in order) until she
says “just right!” (We are guaranteed that one bowl will have b, = ¢, so this will
eventually happen.) We can just set that pair aside. Then pick Goldilocks,, and let her
try all remaining bowls. Again she will match some bowl, and we can set that pair
aside. Continue this way until every Goldilocks has been matched.

How many trials does this take? Certainly we have to complete at most » trials to find
the first match, n» — 1 trials to find the second match, etc. So the number of trials is at
most

ntn-1)+n-2)+---+2+1=» k=0(n?.

k=1
On the other hand, if Goldilocks; likes bowl n, and Goldilocks, likes bowl n — 1, etc.,
then we will do n trials to find the first match, and » — 1 to find the second, and so
on. In total this is a quadratic number (3-") of trials, so there exists an “bad”
instance requiring a quadratic number of garfiparisons. Thus the algorithm requires
Q(n?) trials in the worst case. Therefore it needs ©(n?) trials, since we have matching
O() and €2() bounds.

Handout 9: Problem Set 2 Solutions 5

Problem 2-2. Hitting the target.

Give an O(n) algorithm for the following problem: Given a target integer 7" and an array A of
n integers such that 0 < A[i] < 65536 for every 1 < i < n, determine if there exists a pair
i,j € {1,...n}suchthat Al;] + A[j]=T.

Solution: Use COUNTING-SORT or RADIX-SORT to sort the array A. (These methods apply
since the elements we are trying to sort are integers in a bounded range.) Then the following code
will find a match if one exists:

FIND-TARGET-PAIR(A) > A must be sorted
141
jn
whilej > ¢
if Afi] + A[j] = 65536
return “yes”
else if Afi] + A[j] < 65536
1 1+1
gse j«—j—1

For correctness, it’s obvious that the above code only returns “yes” if A[i| + A[j] = 65536. For the
converse, suppose that A[i*] + A[j*] = 65536 for i* < j*. (For convenience, let i* be the minimum
index such that A[¢*] + A[j*] = 65536, and let j* be the maximum index so that A[i*] + A[j*] =
65536. This implies that A[i] < A[i*] and A[j] > A[j*] forall i < ¢* and j > j*, since the array is
sorted.) Now suppose that 7 is incremented to :* before j is decremented to j*. (The other case is
analogous.) Then we know that j > j*, i = i*, and thus that A[j] + A[i] > A[j*] + A[¢*] = 65536.
Therefore we decrement 5 in the next iteration of the while loop. We will continue to decrement 5
until we reach j = j5*, at which point we will return “yes.”

The running time is obviously linear, because we do only a constant amount of work before incre-
menting i or decrementing j, and we can only do so O(n) times before i > j.

Problem 2-3. Beating the sorting lower bound?

(&) You are a spammer. You have an array A with n entries, each containing information
about a person. Each person is from one of & different families, and there are exactly
n/k members of each family in the array. (You may assume that each family has a
unique last name.) You would like to sort the n entries in alphabetical order according
to (last name, first name), using a comparison-based sorting algorithm. You know
how to sort using ©(nlogn) comparisons, but since A is truly massive in size, you
would like to sort the data faster. So you hire King Arthur Anderson Consulting to
address your problem.

The Anderson Consultant claims that he can sort A using o(n logn) comparisons! He
says he can do this because the array is partially sorted in the following sense:

Handout 9: Problem Set 2 Solutions

(i) Entries A[1,...,n/k] correspond to the members of one of the families, entries
in Aln/k +1,...,2n/k] correspond to the members of another family, etc. In
other words, entries in A[(i — 1)n/k+1,...,i-n/k] fori,1 < i < k correspond
to all the n/k members of one of the £ famillies.

(if) The families are already in alphabetical order according to last name. In other
words, the last name of the family A[1, ..., n/k| comes alphabetically before the
last name of the family A[n/k+1,...,2n/k], etc. In general, the last name of the
family A[(: — 1)n/k +1,...,i-n/k] comes alphabetically before the last name
of the family A[i - n/k+1,..., (1 + 1)n/k] forall i,1 < i < k.

You verify that (i) and (ii) are indeed correct. Should you believe his claim for all
values of £? If not, for what values of £ is it possible to sort A using o(nlogn)
comparisons? Prove your answer.

Solution: You shouldn’t believe him in general.

For example, consider £ = 2. The first n/2 elements (family #1) can be in any of
(n/2)! orders, and the last n/2 elements (family #2) can be in any of (n/2)! orders.
Therefore, by the same argument as given in class for the lower bound for comparison-
based sorting, the number of leaves in the decision tree is [(n/2)!]2. And thus the
height of the tree must be at least log[(n/2)!]> = 2log(n/2)! = Q(nlogn).

The generalization of this argument says that the depth of the decision tree must be
Q(log[(n/k)*) = Q(k - (n/k) - log(n/k)) = Q(nlog(n/k)). In order for nlog(n/k)
to grow slower than n log n, we need log(n/k) = o(logn). In other words, we need

log(n/k) = o(logn)
logn —logk = o(logn)
logk = logn — o(logn)
logk = logn(l—o(1))

k= nl—o(l)

in order for this lower bound to be asympotically slower than n log n.

In the case that & = n'~°(), we can indeed achieve o(nlogn): we sort each group
using, say, MergeSort, and then, by the guarantee about the order of the groups, the
entire array is sorted. The total time taken per group is O(n/klog(n/k)), and there
are k groups. So the total time we take is k& - O((n/k) log(n/k)) = ¢ - nlog(n/k) =
c-n-o(logn)) = o(nlogn).

(b) Anderson goes bankrupt, and loses all of your data. You have a scrambled backup
copy of A, so you can no longer assume that (i) and (ii) hold. You hire another con-
sultant from ConsultingAgency.com to sort the data. She invents new algorithms that
are not comparison based. She claims that she can sort your data in o(n) time. Should
you believe her? Prove your answer.

Handout 9: Problem Set 2 Solutions

Solution: No. Any algorithm to sort a list (comparison-based or not) must scan all n
integers in the input—you can’t sort what you haven’t read—which requires Q(n) time.

(c) After proceedings in bankruptcy court, you recover your partially sorted array. The
ConsultingAgency.com consultant says that she can also use her algorithms on this
partially sorted array for any values of £. For what values of & should you believe her
claim? Prove your answer.

Solution: For & = n, the array is in fact already sorted! But for any & < n, each
family the input might be unsorted. Thus to sort any one family, we must use Q(n/k)
steps simply to read that section of the input. In total, this requires ©(n) steps.

8 Handout 9: Problem Set 2 Solutions

Problem 2-4. Optimal investment strategies (with insider trading).

You are given an array A of n integers. Entry A[] is the stock price of BIM on day 4. Your goal is
to make the most money that you can by buying BIM once and subsequently selling once during
this n-day period.

For any » > ¢, you can buy shares of BIM on day ¢ at price A[¢] and sell on day r at price A[r].
You need to find two indices ¢ and r such that » > ¢ and A[r] — A[¢] is maximized.

It is easy to find the best £ and r in time O(n?), simply by iterating over all possible pairs £ and .
This question asks you to give a more efficient algorithm.

(@) Give an O(nlogn) algorithm to solve this problem. Your algorithm should take A as
input, and produce two indices ¢ and » > ¢ such that A[r] — A[¢] is maximized.

Solution: We consider the pair (¢*,7*) that maximize v,,. The simple idea of this
divide-and-conquer algorithm is the following: either (1) both ¢* and r* are in the
range [1,7n/2], (2) both are in the range [n/2,n],0r (3) 1 < ¢* < n/2 < r* < n. We’ll
handle the first two cases by making recursive calls on A[1...n/2]and A[n/2...n].
What can we say in the third case?

Vgrpx = Alr*] — A[¢"]
(A[r*] = Aln/2]) + (Aln/2] — A[¢7])

= Ugxn/2 + Un /2,0 -

It’s clear that in this case £* must maximize vy, ,—and thus minimizing A[¢/]—and
that »* must maximize v, ., (and thus A[r]). And we can find the ¢* and r* that
maximize these values in linear time, by iterating over all the possible choices.

FIND-LARGEST-RANGE(A, L, R)

> Find B where L < B[0] < B[1] < R that maximizes A[B[1]] — A[B[0]].
1 if(L=R)

2 then B[0] «+ L

3 B[1]«+ L

4 return B

5 M+ [(L+R)/2]

6 1z + FIND-LARGEST-RANGE(A, L, M)

7 1y < FIND-LARGEST-RANGE(A, M, R)

8 z[0] « z€{L,..., M} that minimizes A[z]

9 z[1] + z € {M,..., R} that maximizes A[z]

10 returnw € {z,y, 2} that maximizes A[w[1]] — A[w[0]].

We have that T'(n) = 27(n/2) + cn since steps 6 and 7 require linear time each, and
thus that 7'(n) = O(nlogn).

Handout 9: Problem Set 2 Solutions

(b) Optional extra credit: Give a linear time algorithm for this problem.

Solution: The solution in part (a) handles cases (1) and (2) very efficiently, but
computes the minimum value in A[L ... M] and the maximum value of A[M ... R]
by a linear time scan. Instead we can compute these values recursively as well!

FIND-LARGEST-RANGE-FAST(A, L, R)
> Find (B, min, max) where L < B[0] < B[1] < R that maximizes A[B[1]] — A[B|0]]
> and min and max are the indices of the minimum and maximum values in A[L... R]
> respectively.
1 if (L=R)
2 then B[0] < L
3 B[1]«+ L
4 return (B, L, L)
5 M« [(L+R)/2]
6 (%, lmin, lmas) < FIND-LARGEST-RANGE-FAST (A, L, M)
7 Y, Tmin, "maz) < FIND-LARGEST-RANGE-FAST (A, M, R)
9 z[1] + Tmas
10 w <« w € {z,y, 2z} that maximizes A[w[1]] — A[w[0]]
11 return (w, min(Lmin, Tmin), MaX(lnazs Tmaz)) -
It is easy to show by induction that min and max correctly compute the minimum and
maximum values in A[L ... R]. The correctness of the algorithm follows immediately
from that fact and the proof of correctness in part (a).

By inspection, each line of the program (aside from the recursive calls) takes O(1)
time. Thus we have T'(n) = 27°(n/2) + ¢, and that T'(n) = O(n).

