
Introduction to Algorithms September 5, 2003
Massachusetts Institute of Technology 6.046J/18.410J
Professors Shafi Goldwasser and Silvio Micali Handout 6

Problem Set 1

This problem set is due in recitation on Friday, September 12.

Reading: Chapters 1–4 (excluding
�
4.4); Kingston chapter.

There are three problems. Each problem is to be done on a separate sheet (or sheets) of three-
hole punched paper. Mark the top of each sheet with your name, the course number, the problem
number, your recitation section (i.e. letter), the date, and the names of any students with whom
you collaborated.

You will often be called upon to “give an algorithm” to solve a certain problem. Your write-up
should take the form of a short essay. A topic paragraph should summarize the problem you are
solving and what your results are. The body of your essay should provide the following:

1. A description of the algorithm in English and, if helpful, pseudocode. English explana-
tions should be used liberally in your pseudocode. For convenience, pseudocode may use
standard arithemetic and logical operations, as well as loops and data structures like arrays.
Pseudocode should be understandable to anyone who can program–it should not be ready to
compile!

2. At least one worked example or diagram to show more precisely how your algorithm works.

3. A proof (or indication) of the correctness of the algorithm.

4. An analysis of the running time of the algorithm.

Remember, your goal is to communicate. Graders will be instructed to take off points for convo-
luted and obtuse descriptions.

Problem 1-1. Recurrence Relations

Solve the following recurrences. Give a � bound for each problem. If you are unable to find a �
bound, provide as tight upper (� or �) and lower (� or �) bounds as you can find. Justify your
answers. You may assume that ���
	����	 .

(a) ���������������� ��������� �
(b) ��� �!��#"$��� � �������&%&')(+*��
(c) ���-, � ��#���-, �/.10 ���2, �
(d) ��� �!��3��� � 4 ���5��� �0 6 ���7��� ��98���� � �
(e) ��������3��� �;:<	=����� %

2 Handout 6: Problem Set 1

(f) ��� �!��3��� ')(+*������>�?�@	��
(g) ��������BA/��� ��
C ���B�!D� ��� �

Problem 1-2. Asymptotic Notation

Rank the following functions by order of growth; that is, find an arrangement E 0GF E � FIHIHIHJF E 0 6 of the
functions satisfying E 0 ��K��E � � , E � #�K��E % � , . . . , E 0 4 B�K��E 0 6 � . Partition your list into equivalence
classes such that LM����� and EN� ��� are in the same class if and only if LM� �!����O��EN� �!�P� . (The function
'Q($*�R1� is discussed on pages 55-56 of CLRS.)

� �
SUTQVXWZY � �[
\G] 0

	^ � � �

�`_ a 0 b9b9b9b a � 'Q(+*��
, � �&cXd9e/cXd9e � � % ��'Q(+*��!�
cXd9e �

�f'Q(+*�� � �g�#	=�Z_ �[
\G] 0

^ ')(+*h� �i_j�

Problem 1-3. Sieve of Eratosthenes

The Sieve of Eratosthenes, invented circa 200 B.C., is an algorithm to find all prime numbers
between 2 and an input number k . The algorithm works as follows: we begin with a list of all
integers from 2 to k . For each l mnk , we cross out (i.e. mark as composite) each multiple of
l (�po�l for �rqs,) that is less than or equal to k . When this process terminates, only the prime
numbers between 2 and k are unmarked.

Below, we give pseudocode for this algorithm. At the beginning of the algorithm, every entry in
the array t is initialized to true, i.e. tvuxw y is true for all w F ,vm#wzm{k . At the end of the algorithm,
tvuxw y is true iff w is prime.

ERATOSTHENES-SIEVE � k|� :
1 Let tvuxw y&}�~
����� for all w from 2 to k .
2 for l�} , to k :
3 ��} , .
4 while ��oIl�mBk :
5 t?uX��o=l�y&} LN���-�=� .
6 �p} �g�3	 .
7 endwhile
8 endfor

The table below shows the values of the array elements tvu�	 HIHIH kpy at the end of each while loop
(line 7) during an execution of the algorithm run on input k��	=a .

Handout 6: Problem Set 1 3

i ���X�J� ���X�J� ��� �I� ���X�J� ���X�J� ���x�Z� ���X�J� ���X�J� ���j�G��� ���j�=�P� ���j���J� ���j���J�
1 T T T T T T T T T T T T
2 T T F T F T F T F T F T
3 T T F T F T F F F T F T
4 T T F T F T F F F T F T
... T T F T F T F F F T F T
13 T T F T F T F F F T F T

Prove that the ERATOSTHENES-SIEVE algorithm is correct; that is, prove that upon termination,
tvuxw y is true iff w is prime.

Hint: You can use the following pre-condition and post-condition and you can prove the suggested
loop invariant for the for loop (line 2). Let �¡ represent the statement: t?uXw-y is true iff w is prime.

Pre-Condition: k¢q#, .

Post-Condition: N¡ F@£ w such that ,¤m<w�m3k .

Loop Invariant: N¡ F
£ w such that ,�m<w�m3l .

