Problem Set 1 Solutions

Problem 1-1. Recurrence Relations

Solve the following recurrences. Give a Θ bound for each problem. If you are unable to find a Θ bound, provide as tight upper (O or o) and lower (Ω or ω) bounds as you can find. Justify your answers. You may assume that $T(1)=1$.
(a) $T(n)=7 T\left(\frac{n}{2}\right)+n \sqrt{n}$

Solution: $\Theta\left(n^{\log _{2} 7}\right)$ - By part 1 of the Master Method.
(b) $T(n)=4 T\left(\frac{n}{2}\right)+n^{3} \log n$

Solution: $\Theta\left(n^{3} \log n\right)$ - By part 3 of the Master Method.
(c) $T\left(2^{n}\right)=T\left(2^{n-1}\right)+2^{n}$

Solution: $\Theta\left(2^{n}\right)$. Substitute m for 2^{n}. The resulting relation is $T(m)=T\left(\frac{m}{2}\right)+m$.
Clearly, this is $\Theta(m)$ and thus $\Theta\left(2^{n}\right)$.
(d) $T(n)=T\left(\frac{n}{9}\right)+T\left(\frac{n}{16}\right)+T\left(\frac{n}{25}\right)+\sqrt{n}$

Solution:

The figure above shows the recursion tree that helps us in guessing a solution.
We have that

$$
T(n) \leq \sum_{i=0}^{\left\lfloor\log _{9} n\right\rfloor}\left(\frac{47}{60}\right)^{i} \sqrt{n} \leq \sum_{i=0}^{\infty}\left(\frac{47}{60}\right)^{i} \sqrt{n}=\frac{1}{1-\frac{47}{60}} \sqrt{n}=O(\sqrt{n})
$$

Thus we guess that $T(n)=O(\sqrt{n})$ and we prove it by substitution. Assume that $T(m) \leq c \sqrt{m}$ for an appropriate constant c and for all $m<n$. Then we have that

$$
\begin{aligned}
T(n) & \leq c \sqrt{\frac{n}{9}}+c \sqrt{\frac{n}{16}}+c \sqrt{\frac{n}{25}}+\sqrt{n} \\
& =\left(\frac{47}{60} c+1\right) \sqrt{n} \\
& =c \sqrt{n}-\left(\frac{13}{60} c \sqrt{n}-\sqrt{n}\right) \\
& \leq c \sqrt{n}, \text { for } c \geq 60 / 13
\end{aligned}
$$

Hence $T(n)=O(\sqrt{n})$.
On the other hand by inspection we have $T(n) \geq \sqrt{n}=\Omega(\sqrt{n})$. Hence $T(n)=$ $\Theta(\sqrt{n})$.
(e) $T(n)=T(n-1)+n^{3}$

Solution: $T(n)=\sum_{i=1}^{n-1} i^{3}=\Theta\left(n^{4}\right)$
(f) $T(n)=T(\log n)+O(1)$

Solution: $T(n)=\Theta\left(\log ^{*} n\right)$ - By inspection and substitution.
(g) $T(n)=9 T\left(\frac{n}{27}\right)+(\sqrt[3]{n})^{2}$

Solution: $\Theta\left(n^{\frac{2}{3}} \log n\right)$ - By part 2 of the Master Method.

Problem 1-2. Asymptotic Notation

Rank the following functions by order of growth; that is, find an arrangement $g_{1}, g_{2}, \ldots, g_{16}$ of the functions satisfying $g_{1}=\Omega\left(g_{2}\right), g_{2}=\Omega\left(g_{3}\right), \ldots, g_{19}=\Omega\left(g_{16}\right)$. Partition your list into equivalence classes such that $f(n)$ and $g(n)$ are in the same class if and only if $f(n)=\Theta(g(n))$. (The function $\log ^{*} n$ is discussed on pages 55-56 of CLRS.)

$n^{2+\sin ^{2} n}$	$\sum_{k=1}^{n} \frac{1}{k}$	n	n^{2}
$n!$	3^{10000}	3^{n}	$\log n$
2^{n}	$n^{\log \log n}$	n^{3}	$(\log n)^{\log n}$
$n \log n$	$(n+1)!$	$\sum_{k=1}^{n} k$	$\log (n!)$

Solution:

The following are ordered asymptotically from smallest to largest, are as follows (two functions, f and g are on the same line if $f(n)=\Theta(g(n)))$:

$$
\begin{gathered}
\log n \sum_{k=1}^{n} \frac{1}{k} \\
n \log n \quad \log (n!) \\
\sum_{k=1}^{n} k \\
n^{2+\sin ^{2} n} \\
n^{3} \\
(\log n)^{\log n} \\
3^{n} \\
n!1)! \\
2^{n} \\
n^{\log \log n} \\
n
\end{gathered}
$$

Problem 1-3. Sieve of Eratosthenes

The Sieve of Eratosthenes, invented circa 200 B.C., is an algorithm to find all prime numbers between 2 and an input number N. The algorithm works as follows: we begin with a list of all integers from 2 to N. For each $m \leq N$, we cross out (i.e. mark as composite) each multiple of $m(n \cdot m$ for $n \geq 2)$ that is less than or equal to N. When this process terminates, only the prime numbers between 2 and N are unmarked.

Below, we give pseudocode for this algorithm. At the beginning of the algorithm, every entry in the array P is initialized to true, i.e. $P[i]$ is true for all $i, 2 \leq i \leq N$. At the end of the algorithm, $P[i]$ is true iff i is prime.

```
Eratosthenes-Sieve \((N)\) :
    Let \(P[i] \leftarrow\) true for all \(i\) from 2 to \(N\).
    for \(m \leftarrow 2\) to \(N\) :
    \(n \leftarrow 2\).
    while \(n \cdot m \leq N\) :
            \(P[n \cdot m] \leftarrow\) false.
            \(n \leftarrow n+1\).
    endwhile
    endfor
```

The table below shows the values of the array elements $P[1 \ldots N]$ at the end of each while loop (line 7) during an execution of the algorithm run on input $N=13$.

\mathbf{i}	$P[2]$	$P[3]$	$P[4]$	$P[5]$	$P[6]$	$P[7]$	$P[8]$	$P[9]$	$P[10]$	$P[11]$	$P[12]$	$P[13]$
1	T	T	T	T	T	T	T	T	T	T	T	T
2	T	T	\mathbf{F}	T								
3	T	T	F	T	\mathbf{F}	T	F	\mathbf{F}	F	T	\mathbf{F}	T
4	T	T	F	T	F	T	\mathbf{F}	F	F	T	\mathbf{F}	T
\ldots	T	T	F	T	F	T	F	F	F	T	F	T
13	T	T	F	T	F	T	F	F	F	T	F	T

Prove that the ERATOSTHENES-SIEVE algorithm is correct; that is, prove that upon termination, $P[i]$ is true iff i is prime.
Hint: You can use the following pre-condition and post-condition and you can prove the suggested loop invariant for the for loop (line 2). Let S_{i} represent the statement: $P[i]$ is true iff i is prime.
Pre-Condition: $N \geq 2$.
Post-Condition: $S_{i}, \forall i$ such that $2 \leq i \leq N$.
Loop Invariant: $S_{i}, \forall i$ such that $2 \leq i \leq m$.

Solution:

We will use the given loop-invariant for the for loop (line 2) and the relevant pre- and postconditions to prove the correctness of the algorithm.

We will now prove the given loop invariant. Namely, we will prove by induction that when m is assigned the value k (line 2), S_{i} holds for all $i, 2 \leq i \leq k$.
When m is assigned the value $2, P[2]$ is true since it was initialized to be true. Thus, we have proved that before we execute the for loop the first time, the base case of the loop invariant holds.

Now we will assume that when m is assigned the value k, S_{i} holds for all $i, 2 \leq i \leq k$. We will use this inductive hypothesis to prove that when m is assigned the value $k+1, S_{i}$ holds for all $i, 2 \leq i \leq k+1$.
Let's consider an execution of the while loop with $m=k$. Since n goes from 2 to $\lfloor N / m\rfloor, n \cdot m$ is always at least $2 k$. Since only elements $P[i]$ with $i=n \cdot m$ are (re)set to false, no element $P[i]$ with $i \leq k$ will change value. Thus, S_{i} for $i, 2 \leq i \leq k$, will hold at the end of the execution of the while loop.
It remains to show that S_{k+1} holds at the end of the execution of the while loop. If $P[k+1]$ is true, then it cannot have any divisor d such that $2 \leq d \leq k$. So $k+1$ must be prime. If $k+1$ is prime, then it does not have a divisor $d \leq k$. Thus, it must be true. Thus, we have proved that the loop invariant is correct.
When $m \geq N$, on the final execution of the for loop, we have that S_{i} holds for all $i, 2 \leq i \leq N$, due to the correctness of the loop invariant.

