Problem Set 1 Solutions

Problem 1-1. Recurrence Relations

Solve the following recurrences. Give a Θ bound for each problem. If you are unable to find a Θ bound, provide as tight upper (O or o) and lower (Ω or ω) bounds as you can find. Justify your answers. You may assume that T(1) = 1.

- (a) $T(n) = 7T(\frac{n}{2}) + n\sqrt{n}$ **Solution:** $\Theta(n^{\log_2 7})$ - By part 1 of the Master Method.
- **(b)** $T(n) = 4T(\frac{n}{2}) + n^3 \log n$

Solution: $\Theta(n^3 \log n)$ - By part 3 of the Master Method.

(c) $T(2^n) = T(2^{n-1}) + 2^n$

Solution: $\Theta(2^n)$. Substitute m for 2^n . The resulting relation is $T(m) = T(\frac{m}{2}) + m$. Clearly, this is $\Theta(m)$ and thus $\Theta(2^n)$.

(d) $T(n) = T(\frac{n}{9}) + T(\frac{n}{16}) + T(\frac{n}{25}) + \sqrt{n}$

Solution:

The figure above shows the recursion tree that helps us in guessing a solution. We have that

$$T(n) \le \sum_{i=0}^{\lfloor \log_9 n \rfloor} \left(\frac{47}{60}\right)^i \sqrt{n} \le \sum_{i=0}^{\infty} \left(\frac{47}{60}\right)^i \sqrt{n} = \frac{1}{1 - \frac{47}{60}} \sqrt{n} = O(\sqrt{n})$$

Thus we guess that $T(n) = O(\sqrt{n})$ and we prove it by substitution. Assume that $T(m) \leq c\sqrt{m}$ for an appropriate constant c and for all m < n. Then we have that

$$T(n) \leq c\sqrt{\frac{n}{9}} + c\sqrt{\frac{n}{16}} + c\sqrt{\frac{n}{25}} + \sqrt{n}$$
$$= \left(\frac{47}{60}c + 1\right)\sqrt{n}$$
$$= c\sqrt{n} - \left(\frac{13}{60}c\sqrt{n} - \sqrt{n}\right)$$
$$\leq c\sqrt{n}, \text{ for } c \geq 60/13$$

Hence $T(n) = O(\sqrt{n})$.

On the other hand by inspection we have $T(n) \ge \sqrt{n} = \Omega(\sqrt{n})$. Hence $T(n) = \Theta(\sqrt{n})$.

- (e) $T(n) = T(n-1) + n^3$ Solution: $T(n) = \sum_{i=1}^{n-1} i^3 = \Theta(n^4)$
- (f) $T(n) = T(\log n) + O(1)$ Solution: $T(n) = \Theta(\log^* n)$ - By inspection and substitution.
- (g) $T(n) = 9T(\frac{n}{27}) + (\sqrt[3]{n})^2$ Solution: $\Theta(n^{\frac{2}{3}} \log n)$ - By part 2 of the Master Method.

Problem 1-2. Asymptotic Notation

Rank the following functions by order of growth; that is, find an arrangement g_1, g_2, \ldots, g_{16} of the functions satisfying $g_1 = \Omega(g_2)$, $g_2 = \Omega(g_3)$, ..., $g_{19} = \Omega(g_{16})$. Partition your list into equivalence classes such that f(n) and g(n) are in the same class if and only if $f(n) = \Theta(g(n))$. (The function $\log^* n$ is discussed on pages 55-56 of CLRS.)

$$n^{2+\sin^{2}n} \qquad \sum_{k=1}^{n} \frac{1}{k} \qquad n \qquad n^{2}$$

$$n! \qquad 3^{10000} \qquad 3^{n} \qquad \log n$$

$$2^{n} \qquad n^{\log \log n} \qquad n^{3} \qquad (\log n)^{\log n}$$

$$n \log n \qquad (n+1)! \qquad \sum_{k=1}^{n} k \qquad \log(n!)$$

Solution:

The following are ordered asymptotically from smallest to largest, are as follows (two functions, f and g are on the same line if $f(n) = \Theta(g(n))$):

Problem 1-3. Sieve of Eratosthenes

The Sieve of Eratosthenes, invented circa 200 B.C., is an algorithm to find all prime numbers between 2 and an input number N. The algorithm works as follows: we begin with a list of all integers from 2 to N. For each $m \leq N$, we cross out (i.e. mark as composite) each multiple of m ($n \cdot m$ for $n \geq 2$) that is less than or equal to N. When this process terminates, only the prime numbers between 2 and N are unmarked.

Below, we give pseudocode for this algorithm. At the beginning of the algorithm, every entry in the array P is initialized to *true*, i.e. P[i] is *true* for all $i, 2 \le i \le N$. At the end of the algorithm, P[i] is *true* iff i is prime.

```
ERATOSTHENES-SIEVE(N):
```

The table below shows the values of the array elements $P[1 \dots N]$ at the end of each while loop (line 7) during an execution of the algorithm run on input N = 13.

i	P[2]	P[3]	P[4]	P[5]	P[6]	P[7]	P[8]	P[9]	P[10]	P[11]	P[12]	P[13]
1	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
2	Т	Т	F	Т	F	Т	F	Т	F	Т	F	Т
3	Т	Т	F	Т	F	Т	F	F	F	Т	F	Т
4	Т	Т	F	Т	F	Т	F	F	F	Т	F	Т
	Т	Т	F	Т	F	Т	F	F	F	Т	F	Т
13	Т	Т	F	Т	F	Т	F	F	F	Т	F	Т

Prove that the ERATOSTHENES-SIEVE algorithm is correct; that is, prove that upon termination, P[i] is *true* iff i is prime.

Hint: You can use the following pre-condition and post-condition and you can prove the suggested loop invariant for the **for** loop (line 2). Let S_i represent the statement: P[i] is *true* iff *i* is prime.

Pre-Condition: $N \ge 2$.

Post-Condition: S_i , $\forall i$ such that $2 \leq i \leq N$.

Loop Invariant: $S_i, \forall i \text{ such that } 2 \leq i \leq m.$

Solution:

We will use the given loop-invariant for the **for** loop (line 2) and the relevant pre- and postconditions to prove the correctness of the algorithm.

We will now prove the given loop invariant. Namely, we will prove by induction that when m is assigned the value k (line 2), S_i holds for all $i, 2 \le i \le k$.

When m is assigned the value 2, P[2] is *true* since it was initialized to be *true*. Thus, we have proved that *before* we execute the **for** loop the first time, the base case of the loop invariant holds.

Now we will assume that when m is assigned the value k, S_i holds for all $i, 2 \le i \le k$. We will use this inductive hypothesis to prove that when m is assigned the value k + 1, S_i holds for all $i, 2 \le i \le k + 1$.

Let's consider an execution of the **while** loop with m = k. Since n goes from 2 to $\lfloor N/m \rfloor$, $n \cdot m$ is always at least 2k. Since only elements P[i] with $i = n \cdot m$ are (re)set to *false*, no element P[i] with $i \leq k$ will change value. Thus, S_i for $i, 2 \leq i \leq k$, will hold at the end of the execution of the **while** loop.

It remains to show that S_{k+1} holds at the end of the execution of the **while** loop. If P[k+1] is *true*, then it cannot have any divisor d such that $2 \le d \le k$. So k+1 must be prime. If k+1 is prime, then it does not have a divisor $d \le k$. Thus, it must be *true*. Thus, we have proved that the loop invariant is correct.

When $m \ge N$, on the final execution of the **for** loop, we have that S_i holds for all $i, 2 \le i \le N$, due to the correctness of the loop invariant.