Introduction to Algorithms December 15, 2002
Massachusetts Institute of Technology 6.046J/18.410J
Professors Erik Demaine and Shafi Goldwasser Handout 35

Problem Set 9 Solutions

Problem 9-1. NP Problems

(@) A witness w for an instance = = (G, u, v, k) is a simple path of length at least k£ from
u to v, i.e. a list of vertices wq, w1, . .., w,. The verification algorithm checks that all
w; are distinct, £ > k, wy = u, we = v, and that (w;_1,w;) € Eforalli=1,..., 0. It
accepts if and only if all these conditions are met.
If x € D, then such a witness exists because it is given by the path, which exists by
assumption. Conversely, if the verification algorithm accepts, then the witness gives
a simple path of length at least £, so x € D;. The size of the witness is clearly
polynomial in the size of z, and the verification algorithm runs in polynomial time, so
D, € NP.

(b) A witness w for an instance G is an assignment x of three colors {1, 2,3} to the

vertices. The verification algorithm checks that only the colors {1, 2, 3} are used, and
that x(u) # x(v) for every (u,v) € E.
If G € Dy, then such a coloring exists by assumption. Conversely, if the verification
algorithm accepts, then is a coloring such that no two neighboring vertices have the
same color, therefore G € D,. The witness and verification time are polynomial in
the size of G, s0 D, € NP.

Problem 9-2. Largest Common Subgraphs

The task is to prove that LARGESTCOMMONSUBGRAPH is N P-complete (this was left out of the
problem statement!). First, LARGESTCOMMONSUBGRAPH € N P: a witness is a correspondence
between vertices in G, G, and a list of at least £ edges that they have in common. The verification
algorithm checks that the correspondence is a bijection and that the edges belong to both graphs.

Next, we show how to reduce CLIQUE to LARGESTCOMMONSUBGRAPH: 0n an instance x =
(G, ¢y of CLIQUE (“is there a clique of size at least ¢ in G?”), our reduction f outputs the triple
f(z) = (G, K., Sg)) Here K. is the complete graph (a clique) on ¢ nodes, and (g) =c(c—1)/2
(the number of edges in K.). Clearly, computing this reduction only requires polynomial-time.

We now show that € CLIQUE <= f(zr) € LARGESTCOMMONSUBGRAPH. First suppose
x = (G,c) € CLIQUE: then G has a clique of size ¢, so K, is a subgraph of itself and G.

This subgraph has (g) edges, so f(z) € LARGESTCOMMONSUBGRAPH. Conversely, suppose

f(z) € LARGESTCOMMONSUBGRAPH: then G and K. have a common subgraph of at least (;)
edges. But K. only has that many edges, so K. in its entirety must be a subgraph of G. Therefore
x = (G,c) € CLIQUE. This completes the reduction. Because CLIQUE is N P-complete, so is
LARGESTCOMMONSUBGRAPH.

2 Handout 35: Problem Set 9 Solutions

Problem 9-3. Approximate TSP

Our solutions is similar to the 2-approximation in CLRS, but it uses one extra trick to reduce the
approximation factor. You should familiarize yourself with that algorithm before reading on.

Our algorithm is as follows: first, find an MST of the graph. This gives us some edge set that forms
a tree. Next, find a minimum perfect matching on those nodes which have odd degree in the tree
(for example, any leaf in the MST has odd degree in the tree). Add the edges of that matching to
the MST, so that now every vertex has even degree with respect to the chosen edge set. This is an
Eulerian graph, which has an easy-to-find Eulerian tour (a tour which traverses every edge exactly
once). We turn this Eulerian tour into a valid traveling saleman tour by simply “shortcutting” over
nodes that have already been visited, as in CLRS. By inspection, this algorithm is efficient.

We now analyze the approximation factor of the algorithm: let OPT be the length of an optimum
traveling salesman tour. Then the weight of the MST is < OPT, as argued in CLRS. Let M AT be
the cost of a minimum-weight matching on the odd-degree vertices in the MST. Also, let OD D be
the length of an optimum traveling salesman tour on the odd-degree vertices of the MST. We can
shortcut a tour on all the vertices to get a tour of only the odd-degree vertices, so ODD < OPT.
Now note that in a tour of the odd-degree vertices, we can partition the edges into “odd” and
“even,” so that the odd edges form a perfect matching on the odd-degree vertices, and so do the
even edges. Therefore 2 - MAT < ODD < OPT, so MAT < OPT/2. Now note that the
Eulerian tour on the selected edges uses each edge exactly once, so its cost is at most 30 PT/2.
Shortcutting the tour to make it a valid traveling salesman tour can only make it shorter, and this
completes the proof.

Problem 9-4. Decision to Search

(@) The intent of the question was to find a clique of size > £ (not < k, which is triv-

ial). Suppose there is a polynomial-time algorithm C' for deciding whether (G, k) €
CLIQUE. We can use this algorithm to find in G a clique of size > k, if one exists.
The algorithm FIND-CLIQUE(G, k) works in the following way: first, see if C accepts
(G, k). If not, return “NONE.” If so, and G has only k vertices, return G. If C accepts
and G has more than & vertices, do the following: pick an arbitrary vertex v of G,
and remove it and all its incident edges. Call the resulting graph G’. Then run C on
(G', k): if C rejects, restore v and its incident edges and remove a different vertex,
calling it G’ again. Repeat until C' accepts some (G’, k): this must happen, because
some vertex v of G is not part of a k-clique in G, so removing it means that G’ still
has a k-clique. Once C accepts, recursively call FIND-CLIQUE(G’, k) and return its
output.
First, we argue correctness: clearly the base case of FIND-CLIQUE is correct. Also,
we have already argued that C' will accept some (G’, k). Furthermore, a clique of size
k in G’ is also a clique in G, so by induction on the number of nodes, correctness
follows.

Next, this algorithm is polynomial-time: we make at most |V/| calls to C'in the body of
FIND-CLIQUE. Each recursive call to FIND-CLIQUE decreases the number of nodes

Handout 35: Problem Set 9 Solutions 3

by 1, so the number of calls is at most |V'|. Therefore C'is called at most |V |? times.
Removing and restoring vertices are polynomial-time modifications, so the whole al-
gorithm is polynomial-time, as desired.

(b) Because CLIQUE is N P-complete, if CLIQUE € P then TSP € P (because TSP €
N P). That means there is a polynomial-time procedure 7" which, on input (G, £), tells
whether there is a traveling salesman tour in G of cost < /. First, we find the optimum
tour cost ¢ by binary searching between 0 and the sum of all the edge weights, using
T to test each candidate optimum.

Next, we search for an optimum tour in the following way: first, if the graph is a cycle,
return its edges as the optimum tour. Otherwise, remove an edge (u, v) (alternatively,
increase its cost to co) and use T to test if the optimum cost ¢ is maintained. If not,
restore the edge and remove different ones, until the optimum is maintained as ¢ (this
must happen for some edge, because an optimum tour cannot use all edges). In this
way we can keep removing edges that we know are not in a particular optimum tour,
until only those edges in the tour remain. Such a procedure is clearly polynomial-time.

Problem 9-5. Randomized Reductions

The algorithm for A is as follows: on input z, choose a random y of appropriate length and compute
f(z,y). Then run the algorithm for B on f(z,y). Repeat this 100 times, each time with a new,
independent random value y. If ever the algorithm for B rejects, then reject z. If it accepts every
time, then accept.

First, it is clear that this procedure is polynomial-time: its running time is 100 times the time for
computing f, times the time for deciding B. All of these factors are polynomial, so the product is
too.

Now we analyze the error of this algorithm: if z € A, then f(z,y) € B for every y, so the
algorithm will always accept (zero error). If z ¢ A, then the algorithm accepts (i.e., makes an
error) only if f(z,y) € B for all 100 random choices of y. For each y this probablility is at most
1/2, and each y is independent. Therefore the error probability is at most 2%, and the algorithm
is correct with probability at least 1 — 27100,

