6.045J/18.400J: Automata, Computability and Complexity	Prof. Nancy Lynch
Homework 3	
Due: Monday, February 26, 2007, 5PM	$Elena\ Grigorescu$

Reading: Sipser, Sections 1.3 and 1.4

Problem 1: Taken from Sipser 1.18. Give regular expressions generating the following languages. In all cases the alphabet is $\{0,1\}$.

- 1. $L_1 = \{w | w \text{ contains at least three } 1s\}.$
- 2. $L_2 = \{w | w \text{ has length at least 3 and its third symbol is 0}\}.$
- 3. $L_3 = \{w | w \text{ doesn't contain the substring } 110\}.$
- 4. $L_4 = \{w | \text{ every odd position of } w \text{ is a } 1\}.$
- 5. $L_5 = \{w | w \text{ contains at least two } 0s \text{ and at most one } 1\}.$

Problem 2: Sipser 1.19. Use the procedure described in Lemma 1.55 to convert the following regular expressions to nondeterministic finite automata.

- 1. $(0 \cup 1)*000(0 \cup 1)*$
- 2. $(((00)^*(11)) \cup 01)^*$
- 3. ∅*

Problem 3: Sipser 1.21. Use the procedure described in Lemma 1.60 to convert the following finite automata to regular expressions.

Problem 4: Use the pumping lemma to show that the following languages are not regular.

- 1. $A_1 = \{www|w \in \{0,1\}^*\}.$
- 2. $A_2 = \{w \in \{0,1\}^* | \text{ the number of } 0s \text{ in } w \text{ is a perfect square } \}.$

Problem 5: Based on Sipser 1.30. Describe the error in the following "proof" that 0^*1^* is not a regular language. (An error must exist because 0^*1^* is regular.)

The proof is by contradiction. Assume that 0^*1^* is regular. Let p be the number of states in a DFA recognizing 0^*1^* . Choose s to be the string 0^p1^p . You know that s is a member of 0^*1^* , but Example 1.73 (in the text) shows that s cannot be pumped. Thus you have a contradiction. So 0^*1^* is not regular.

```
Problem 6: Sipser 1.47
Let \Sigma = \{1, \#\} and let Y = \{w \mid w = x_1 \# x_2 \# \dots \# x_k \text{ for } k \geq 0, \text{ each } x_i \in 1^*, \text{ and } x_i \neq x_j \text{ for } i \neq j\}.
```

Prove that Y is not regular.