6.045J/18.400J: Automata, Computability and Complexity

Nancy Lynch

Homework 10

Due: April 23, 2007 Elena Grigorescu

Readings: Sections 7.4, 7.5

Problem 1: Let A and B be nontrivial languages over an alphabet Σ (that is, not equal to \emptyset or Σ^*). State whether each of the following is KNOWN TO BE TRUE, KNOWN TO BE FALSE, or UNKNOWN. Explain carefully why. For example if you claim that a reduction exists, then you should actually define the reduction.

- 1. If $A \leq_P B$, then $\overline{A} \leq_P \overline{B}$.
- 2. If $B \in P$ and A is nontrivial (not equal to \emptyset or $Sigma^*$), then $A \cap B \leq_P A$.
- 3. If $B \in P$ and A is nontrivial, then $A \cup B \leq_P A$.
- 4. If $A \cap B$ is NP-complete, $A \in NP$ and $B \in P$, then A must be NP-complete.
- 5. If $A \cup B$ is NP-complete, $A \in NP$ and $B \in P$, then A must be NP-complete.
- 6. If A is NP-complete, $\overline{A} \in NP$ and $B \in NP$, then \overline{B} must be in NP.
- 7. If A is NP-complete, $\overline{A} \in NP$ and $B \in NP$, then \overline{B} must be in P.

Problem 2: For each of the following pairs of sets A and B, show that $A \leq_P B$.

- 1. A = SAT, and $B = SAT UNSAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula that is not a tautology (that is, it has at least one non-satisfying assignment)};$
- 2. A = SAT, and $B = TRIPLE SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula that has at least three distinct satisfying assignments }.$
- 3. A = VC, the Vertex Cover problem, and B = HALF VC, defined as $\{\langle G \rangle | G \text{ is an undirected graph with an even number of vertices, of which some half form a vertex cover }.$