Note: Recitation meets on Thursday, Feb 8 at 10am in 34-302, 1pm in 26-328 and 4pm in 34-304.

Problem 1: Construct truth tables for each of the following formulas. Also, for each pair of formulas, state which of the following holds:

- They are equivalent,
- They are not equivalent, but one implies the other (make sure to state which is which), or
- Neither of the above:
(a) $(p \wedge q) \Rightarrow p$
(b) $p \Rightarrow(q \Rightarrow p)$
(c) $(p \Rightarrow q) \Rightarrow p$
(d) $(p \oplus q) \Rightarrow(\neg p \Leftrightarrow \neg q)$

Problem 2: Fix any finite set S and let the power set of S be denoted by $P(S)$. Let R be the relation between elements of $P(S)$ such that $A R B$ if and only if there is a bijection between A and B.
(a) Show that R is an equivalence relation.
(b) Define a relation $R_{1} \subseteq R$ that is reflexive and symmetric but not transitive.
(c) Define a relation $R_{2} \subseteq R$ that is reflexive and transitive but not symmetric.
(d) Define a relation $R_{3} \subseteq R$ that is symmetric and transitive but not reflexive.

Problem 3: Proof practice

Part (a). Sipser, Problem 0.10:
Find the error in the following proof that $2=1$.
Consider the equation $a=b$. Multiply both sides by a to obtain $a^{2}=a b$. Subtract b^{2} from both sides to get $a^{2}-b^{2}=a b-b^{2}$. Now factor each side, $(a+b)(a-b)=b(a-b)$, and divide each side by $a-b$, to get $a+b=b$. Finally, let $a=1$ and $b=1$, which shows that $2=1$.

Part (b). Prove that there exists a natural number n_{0} such that, for every natural number $n \geq n_{0}$, there exist natural numbers a, b such that $n=3 a+7 b$.

Part (c). Let function $f: \mathbb{Z}^{+} \times \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$be defined recursively as follows:
$\forall n, k, 0 \leq k \leq n, f(n, k)= \begin{cases}1, & k=0 \\ 1, & k=n \\ f(n-1, k)+f(n-1, k-1), & \text { for } n \geq 2,1 \leq k \leq n-1 .\end{cases}$
Prove that for every $n, k, 0 \leq k \leq n, f(n, k)$ is equal to the binomial coefficient (" n choose k "), which is defined as

$$
\frac{n!}{k!(n-k)!}
$$

