

Geometric sums

$$
1+r+r^{2}+r^{3}+\cdots+r^{n}=\frac{r^{n+1}-1}{r-1}
$$

Proof by WOP. Let m be smallest n with \neq. But $=$ for $n=0$, so $m>0$, and

$$
1+r+r^{2}+r^{3}+\cdots+r^{m-1}=\frac{r^{m}-1}{r-1}
$$

(c) $\mathrm{O} \Theta(1)$

Geometric sums

$$
1+r+r^{2}+r^{3}+\cdots+r^{n}=\frac{r^{n+1}-1}{r-1}
$$

Proof by WOP. Let m be smallest n with \neq. But $=$ for
$n=0$, so $m>0$, and
$1+r+r^{2}+r^{3}+\cdots+r^{m-1}=\frac{r^{(m-1)+1}-1}{r-1}$

Geometric sums

$$
1+r+r^{2}+r^{3}+\cdots+r^{m-1}=\frac{r^{m}-1}{r-1}
$$

add r^{m} to both sides
LHS $=1+r+r^{2}+r^{3}+\cdots+r^{m-1}+r^{m}$
RHS $=\frac{r^{m}-1}{r-1}+\frac{r^{m+1}-r^{m}}{r-1}=\frac{r^{m+1}-1}{r-1}$
so $=$ at m, contradicting \neq : there is no counterexample.

©

