

Prime Products

Thm: Every integer >1 is a product of primes.
So $m=j \cdot k$ for integers j, k where $m>j, k>1$. Now $j, k<m$ so both are prime products: $j=p_{1} \cdot p_{2} \cdots p_{94} \quad k=q_{1} \cdot q_{2} \cdots q_{213}$

品是

Prime Products

Thm: Every integer >1 is a product of primes.
Proof: (by contradiction) Suppose \{nonproducts\} is nonempty. By WOP, there is a least $m>1$ that is a nonproduct. This m is not prime (else is a product of 1 prime.

Prime Products

Thm: Every integer >1 is a product of primes.
...now
$m=j \cdot k=p_{1} \cdot p_{2} \cdots p_{94} \cdot q_{1} \cdot q_{2} \cdots q_{213}$ is prime product, contradiction.
So \{counterexamples $\}=\varnothing$. QED

February 13, 2012
(c) $1 \times(1)$

Well Ordered Postage

available stamps:

5\$
3\$
Thm: Every number is postal.
Prove by WOP. Suppose not. Let m be least counterexample.
© $\mathbb{O B (0)}$
Albert R Meyer
February 13, 2012

