

Example：
$61394323221=$
$53 \cdot 37 \cdot 37 \cdot 37 \cdot 11 \cdot 11 \cdot 7 \cdot 3 \cdot 3 \cdot 3$

Fundamental Thm．of Arithmetic
Every integer＞ 1 factors uniquely into a weakly decreasing sequence of primes
c）（1）© Albert R Meyer March 5， 2014

蝛别薄 Prime Divisibility
Lemma：p prime and $p \mid a b$ implies pla or plb
pf：say $\operatorname{not}(p \mid a)$ ，so $\operatorname{gcd}(p, a)=1$

Prime Divisibility

Cor :If p is prime, and

$$
p \mid a_{1} \cdot a_{2} \cdot \cdots \cdot a_{m}
$$

then pla for some i.
pf : by induction on m .

$$
\begin{aligned}
& \text { Unique Prime Factorization } \\
& \text { pf: suppose not. choose smallest } n>1 \text { : } \\
& \quad n=p_{1} \cdot p_{2} \cdots p_{k}=q_{1} \cdot q_{2} \cdots q_{m} \\
& \quad p_{1} \geq p_{2} \geq \cdots \geq p_{k} \\
& q_{1} \geq q_{2} \geq \cdots \geq q_{m} \\
& \text { If } q_{1}=p_{1} \text {, then } p_{2} \cdots p_{k}=q_{2} \cdots q_{m} \\
& \text { is smaller nonunique. }
\end{aligned}
$$

Every integer $n>1$ has a unique factorization into primes: $p_{1} \cdot \cdots \cdot p_{k}=n$ with $p_{1} \geq p_{2} \geq \cdots \geq p_{k}$
(c) (${ }^{(1)}(0)$ Albert R Meyer March 5, 2014

$$
\begin{gathered}
\text { Unique Prime Factorization } \\
\text { pf: suppose not. choose smallest } n>1 \text { : } \\
\qquad \begin{array}{c}
n=p_{1} \cdot p_{2} \cdots p_{k}=q_{1} \cdot q_{2} \cdots q_{m} \\
p_{1} \geq p_{2} \geq \cdots \geq p_{k} \\
q_{1} \geq q_{2} \geq \cdots \geq q_{m}
\end{array}
\end{gathered}
$$

So can assume $q_{1}>p_{1} \geq p_{i}$

```
*)
pf: but q}\mp@subsup{q}{1}{}|n=\mp@subsup{p}{1}{}\cdot\mp@subsup{p}{2}{}\cdots\mp@subsup{p}{k}{
so q}\mp@subsup{q}{1}{}|\mp@subsup{p}{i}{}\mathrm{ for some i by Cor,
contradicting that q}\mp@subsup{q}{1}{}>\mp@subsup{p}{i}{
                                    QED
@(0) (%)
Albert R Meyer```

