

\section*{| 6 | 9 | 13 | 7 |
| :---: | :---: | :---: | :---: |
| 12 | | 10 | 5 | \\ | 12 | | 10 | 5 | |
| :---: | :---: | :---: | :---: | :---: |
| 3 | 1 | 4 | 14 | |
| | | | | 1 | | 15 | 8 | 11 | 2 |
| :--- | :--- | :--- | :--- | \\ Proving Uncountability}

Lemma.
If U is an uncountable set and

$$
A \operatorname{surj} U,
$$

then A is uncountable. uncount. 2

$$
\begin{aligned}
& \text { The Real Numbers are Uncountable } \\
& \sqrt{2}=1.4142 \ldots, \quad 5=5.000 \ldots \\
& \frac{1}{10}=0.1000 \ldots, \quad \frac{1}{3}=0.333 \ldots \\
& \frac{1}{99}=0.010101 \ldots \\
& \text { Decimal expansions: } \\
& \text { (10) }
\end{aligned}
$$

$$
\begin{gathered}
\text { The Real Numbers are Uncountable } \\
b(r)::=0,1 \text { decimals of } r \\
\sqrt{2}=1.4142 \ldots, \quad b(5)=000 \ldots \\
\frac{1}{10}=0.1000 \ldots, \quad \frac{1}{3}=0.333 \ldots \\
\frac{1}{99}=0.010101 \ldots
\end{gathered}
$$

$$
\begin{aligned}
& \text { (12) } 1107 \text {, } \\
& b(r)::=0,1 \text { decimals of } r \\
& \sqrt{2}=1.4142 \ldots, \quad b(5)=000 \ldots \\
& b\left(\frac{1}{10}\right)=1000 \ldots, \quad \frac{1}{3}=0.333 \ldots \\
& \frac{1}{99}=0.010101 \ldots \\
& \text { (c) © () © }
\end{aligned}
$$

(90) 110,7 The Real Numbers are Uncountable
$b(r)::=0,1$ decimals of r
$b(\sqrt{2})$ undefined, $b(5)=000 \ldots$
$b\left(\frac{1}{10}\right)=1000 \ldots, \quad b\left(\frac{1}{3}\right)$ undefined,
$b\left(\frac{1}{99}\right)=010101 \ldots$
weoms

6	9	13	7
12		10	5

The Real Numbers are Uncountable | 3 | | 1 | |
| :---: | :---: | :---: | :---: |
| 15 | 8 | 14 | |

$$
\mathbb{R} \text { surj }\{0,1\}^{\omega}
$$

So \mathbb{R} is uncountable
(c) (1) (0) Albert R Meyer, February 28, 2014

$e(n)::=$ exponents of primes in the factorization of n
$e: \mathbb{N} \rightarrow\left(\mathbb{Z}^{+}\right)$*
is a surjective function

```
0%0%
% [12 10, 
|\\:10
8
e ( n ) : : = ~ e x p o n e n t s ~ o f ~ p r i m e s ~ i n
    the factorization of n
e(34}\mp@subsup{7}{}{22}2\mp@subsup{3}{}{11})=(4,22,11
```

c(1) ()

Sequences of \mathbb{Z}^{+}

$\mathbb{N} \operatorname{surj}\left(\mathbb{Z}^{+}\right)$*

So $\left(\mathbb{Z}^{+}\right){ }^{*}$ is countable

6	9	13	7
12		10	5
3	1	4	14

3	1	4	14
15	8	11	2

