

February 13, 2015

truth-tables 3

Albert R Meyer

Satisfiability & Validity

satisfiable: P, NOT(P)

not satisfiable: (P AND NOT(P))
valid: (P OR NOT(P))

Albert R Meyer

February 13, 2015

truth-tables.10

Equivalence & Validity

G and H are equivalent exactly when (G IFF H) is valid

CC (1) (0)
BY SA Albert R Meyer

February 13, 2015

truth-tables.11

Verifying Valid, Satisfiable

Truth table size doubles with each additional variable
--exponential growth. Makes truth tables impossible when there are hundreds of variables.
(In current digital circuits, there are millions of variables.)

February 13, 2015

truth-tables.12

Fast Test for SAT?

The P = NP? question is equivalent to asking if there is an "efficient" (polynomial rather than exponential time) procedure to check satisfiability (SAT).

CO O Albert R Meyer

February 13, 2015

truth-tables,13

SAT versus VALID

To check that G is valid, can check that NOT(G) is not satisfiable. So checking for one is equally difficult (or easy) as checking for the other.

February 13, 2015

truth-tables.14