

98\% accurate TB testing A great-sounding diagnostic test for TB: if someone has TB the test is guaranteed to detect it.

[^0]

98\% accurate TB testing
Overall
$\operatorname{Pr}[$ mistake $]<\frac{1}{50}$
c) (i) ©

April 29, 2016

$$
\begin{aligned}
& \operatorname{Pr}[\quad+\quad \mid T B]=1 \\
& \operatorname{Pr}[+\mid \operatorname{not}(T B)]=\frac{2}{100} \\
& \text { (false positive rate only } 2 \% \text {) }
\end{aligned}
$$

98\% accurate TB testing Your doctor tests you, and it says TB!

```
98\% accurate TB testing Your doctor tests you, and it says TB! He says
"The hypothesis that you have TB holds at the 98\% confidence level."

98\% accurate TB testing
TB is a serious disease, and your Doc is "98\% confident" you have it. Should you get treatment?
98\% accurate TB testing
your Doc is "98\% confident"
you have it. Should you get
treatment?
```

. .ivit 98% accurate TB testing
TB is a serious disease, and your Doc is "98\% confident" you have it.

```

\section*{8id Do you have TB?}

TB is a serious disease, and your Doc is "98\% confident" you have it. Should you get treatment? ...depends on probability you have TB.
(c) (1) ©

Confidence vs Prediction
Confidence indicates
\[
\operatorname{Pr}[+\operatorname{lno} T B] .
\]
You want prediction:

> Confidence vs Prediction
> Bayes' Theorem lets us
> find \(\operatorname{Pr}[\) no TB \(\mid+]\)
> given \(\operatorname{Pr}[+\mid\) noTB \(]\)

Confidence vs Prediction
Confidence indicates
\[
\operatorname{Pr}[+\mid n o T B] .
\]

You want prediction:
\[
\operatorname{Pr}[\text { no } T B \mid+] .
\]

Do not confuse these!
(c) (1) ()

Odds of an Event
Event E
\(\operatorname{Odds}[\mathrm{E}]::=\frac{\operatorname{Pr}[\mathrm{E}]}{\operatorname{Pr}[\overline{\mathrm{E}}]}\)

\section*{(iu Odds of an Event example: 6-sided die \(\operatorname{Pr}[\) roll 3\(]=\frac{1}{6}\)}

Odds[roll 3] \(=\frac{1 / 6}{5 / 6}=\frac{1}{5}\) "1 to 5"

\section*{Do you have TB?}

Odds[no TB|+]

Odds of TB
Odds[no TB] \(=\frac{\operatorname{Pr}[\text { no } T B]}{\operatorname{Pr}[T B]}\)

Albert R Meyer, April 29, 2016

\section*{Do you have TB?}

Odds \([\) no \(T B \mid+]=\frac{\operatorname{Pr}[\text { no } T B \mid+]}{\operatorname{Pr}[T B \mid+]}\)
\[
=\frac{\operatorname{Pr}[+\mid \mathrm{no} \operatorname{TB}] \operatorname{Pr}[\mathrm{no} \mathrm{~TB}] / \operatorname{Pr}[+]}{\operatorname{Pr}[+\mid \mathrm{TB}] \operatorname{Pr}[\mathrm{TB}] / \operatorname{Pr}[+]}
\]
\[
\begin{aligned}
& \text { Do you have TB? } \\
& \text { Odds }[\text { no } T B \mid+]=\frac{\operatorname{Pr}[\text { no } T B \mid+]}{\operatorname{Pr}[T B \mid+]} \\
& =\left(\frac{\operatorname{Pr}[+\mid \text { no TB }}{\operatorname{Pr}[+\mid T B)}\right)(\operatorname{Pr[noTB}[\operatorname{TB}] / \operatorname{Pr}[\mathrm{Pr}[\mathrm{t}] .
\end{aligned}
\]

\section*{(1) Do you have TB? \\ Odds[no TB \(\mid+\) ] = \\ \[
\underbrace{\frac{\operatorname{Pr}[+\mid n \mathrm{~TB}]}{\operatorname{Pr}[+\mid \mathrm{TB}]}}_{\text {Bayes'factor }} \cdot \text { Odds[no TB] }
\]}
(c) (1) ()
\[
\begin{aligned}
& \text { Odds[noTB } \mid+]= \\
& \frac{\operatorname{Pr}[+\mid n o T B]}{\operatorname{Pr}[+\mid T B]} \cdot \frac{\operatorname{Pr}[n o T B]}{\operatorname{Pr}[T B]} \\
& \text { Do you have TB? } \\
& \text { OD }
\end{aligned}
\]

䁾跲 \(11,000 \mathrm{~TB}\) cases reported CDC got reports of 11,000 cases of TB in US in 2011. Will be lots of unreported. So estimate:
\[
\operatorname{Pr}[T B]=\frac{1}{10,000}
\]
(c) (1) (2) Albert R Meyer, April 29, 2016

11,000 TB cases reported CDC got reports of 11,000 cases of TB in US in 2011. Will be lots of unreported.
So estimate:
Odds[no TB] \(=9,999\)

Do you have TB?
Odds \([\) no \(T B \mid+]=\frac{1}{50} \cdot 9,999\)
```

Mi*ido you have TB?
Odds[no TB| +] = 199.98
Pr[no TB | +] = 0.9950 ...

```

Unlikely you have TB
Because of relatively high false positive rate (2\%)
compared to TB rate ( \(0.01 \%\) ), predicted probability of TB remains small (1/2 \%)!
(c) (1) () Albert R Meyer, April 29, 2016 stino. 35

\section*{囒 Unlikely you have TB \\ Predicted probability of TB \\  \\ c) (1) (0) Albert R Meyer, April 29, 2016 \\ }
```

\#\#****)
98% accurate test is not so good here. In fact, there's a trivial test that is 99.99% accurate:
always say "No TB"

(1) 98% accuracy still useful 98\% accurate test did increase your odds of TB 50 times.

(呺触 98% accuracy still useful 98\% accurate test did increase your odds of TB 50 times. If you only had 7 M medicine doses for a population of 350 M , whom should you medicate?

98\% accuracy still useful
If you medicate at random you'll only medicate

$$
\frac{7}{350}=2 \%
$$

of sick people.
(c) (i) © Albert R Meyer,

April 29, 2016


```
Instead, medicate the 7M
who test positive.```


[^0]:    98\% accurate TB testing A great-sounding diagnostic test for TB: if someone has TB the test is guaranteed to detect it. If they don't have TB, the test says so $98 \%$ of the time.

