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Strong Induction

ove P(0). Then prove P(n+1)
assuming all of

P(0), P(D), ..., P(n)
(instead of just P(n)).
Conclude Vm.P(m)
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Postage by Strong Induction

e

5o 3¢
Thm: Get any amount > 8¢

By sfrong induction with hyp:
P(n) ::= can form n + 8¢,
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Postage by Strong Induction

e

s 3¢
Thm: Get any amount > 8¢

base case P(0 + 8¢

&
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fi Postoo= by Strong Tnduction

available stamps:

5¢ 3¢

Thm: Get any amount > 8¢
inductive step:

Assume m+8¢ forn >m > 0.
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5¢ 3¢

Thm: Get any amount > 8¢
inductive step:

Assume all from 8 to n+8¢.
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Postage by Strong Induction

5¢ 3¢

Thm: Get any amount > 8¢
inductive step:

+ - -
Assume all from 8 to n+8¢. n=1, 1+9¢ =
Prove can get n+9¢, for n>0
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Postage by Strong Induction Postage by Strong Induction

n > 2, so by hypothesis We conclude by strong
can get (n-2)+8¢ induction that,

using 3¢ and 5¢ stamps,
n + 8¢ postage can be
formed for all n > 0.

——n-2)+8¢—
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e . a: Analyzing the Stacking Game
“tm=  Unstacking game an- 0 y#hg 3
@0 - - @ -
E E Claim: Every way of unstacking
Start: a stack of boxes asb a b blocks ai h .
Move: split any stack into two of h blocks gives the same score:
sizes G,b>o n(n 1)
Scoring: a-b points (n-1)+(n-2)+---+1 = ——
Keep moving: until stuck 2
Overall score: sum of move scores
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Claim: Starting with size n stack,

final score will be
n(n-1)

2

Proof: by Strong induction with
Claim(n) as hypothesis

Analyzing the Game
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w5l Proving the Claim by Induction
o -

Base case n = 0:
0(0-1)
2

Claim(0) is &
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== Proving the Claim by Induction
@om -

Inductive step. Assume for

stacks<n, and prove C(n+1):
h+1)n

(n+1)-stack score = (n+Dn
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1 Proving the Claim by Induction
B
Inductive step.

Case n+1 = 1. verify for 1-stack:

score=0= @
c(l)is &
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éig Proving the Claim by Induction
Eom -
Inductive step.

Case n+1>1. Split n+1 into an
a-stack and b-stack,
where a + b = n +1.
(a + b)-stack score = ab +

a-stack score + b-stack score
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BHei|  Proving the Claim by Induction
Ehn
by strong induction:

a-stack score = @
b-stack score :@
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| Proving the Claim by Induction

D -
total (a + b)-stack score =
ab + aa-1) + b(b-1)

2 2
(a+b)(a+b)-1) _(n+1)n
2 S22
so C(n+1) is &8
We're donel

2012

uuuuuuuuu 3




