Strong Induction
 @O®®
 Albert R Meyer February 24, 2012
 lec 3F. 1

\quad Strong Induction
assuming all of
$P(0), P(1), \ldots, P(n)$
(instead of just $P(n)$).
Conclude $\forall m \cdot P(m)$

 available stamps:

 5\$ 3\$

Thm: Get any amount $\geq 8 \mathbb{}$ ©
By strong induction with hyp: $P(n)::=$ can form $n+8 \$$.

Postage by Strong Induction
available stamps:

Thm: Get any amount $\geq 8 \mathbb{}$ © inductive step:
Assume $m+8 \Phi$ for $n \geq m \geq 0$.
© 9 (1)
Albert R Meyer February 24, 2012 lec 3 F. 5

Postage by Strong Induction
available stamps:

5\$ 3母
Thm: Get any amount $\geq 8 \mathbb{}$ © base case $P(0)$: make $0+8 \$$

©(1)

6	9	13	7
12		10	5
3	1	4	14
15	8	11	2

available stamps:

Thm: Get any amount $\geq 8 \mathbb{}$ inductive step:
Assume all from 8 to $n+8 \$$.

available stamps:

Thm: Get any amount $\geq 8 \$$ inductive step:
Assume all from 8 to $n+8 \$$.
Prove can get $n+9 \Phi$, for $n \geq 0$
©(9)(9)
Albert R Meyer February 24, 2012 lec $3 F .7$

Postage by Strong Induction

$n \geq 2$, so by hypothesis can get ($n-2$) $+8 \$$

Postage by Strong Induction inductive step cases:

$$
n=0,0+9 \Phi=
$$

$$
n=1,1+9 \Phi=
$$

© Albert R Meyer February 24, 2012 \qquad

Postage by Strong Induction
We conclude by strong induction that, using $3 \$$ and $5 \$$ stamps, $n+8 \$$ postage can be formed for all $n \geq 0$.
c) $\odot \Theta(0)$ Albert R Meyer February 24, 2012 lec 3 F. 10

Unstacking game

Start: a stack of boxes

Move: split any stack into two of sizes $a, b>0$
Scoring: $a \cdot b$ points
Keep moving: until stuck
Overall score: sum of move scores
(1) ©®(Albert R Meyer February 24, 2012 lec 3F, 11

Analyzing the Stacking Game

Claim: Every way of unstacking n blocks gives the same score:

$$
(n-1)+(n-2)+\cdots+1=\frac{n(n-1)}{2}
$$

6	9	13	7
12	10	10	
3	1	4	5
15	8	14	

Analyzing the Game

Claim: Starting with size n stack, final score will be

$$
\frac{n(n-1)}{2}
$$

Proof: by Strong induction with Claim(n) as hypothesis

$$
\begin{aligned}
& \text { Base case } n=0: \\
& \text { score }=0=\frac{0(0-1)}{2} \\
& \text { Claim }(0) \text { is }
\end{aligned}
$$

Proving the Claim by Induction Inductive step.
Case $n+1=1$. verify for 1 -stack:

$$
\begin{gathered}
\text { score }=0=\frac{1(1-1)}{2} \\
C(1) \text { is }
\end{gathered}
$$

Albert R Meyer February 24, 2012
lec 3F. 16


```
*)
*OM!
Inductive step.
Case n+1>1. Split n+1 into an
    a-stack and b-stack,
    where a+b = n+1.
(a+b)-stack score = ab +
    a-stack score + b-stack score
(c)(0@()

解 total \((a+b)\)-stack score \(=\) \(a b+\frac{a(a-1)}{2}+\frac{b(b-1)}{2}=\) \(\frac{(a+b)((a+b)-1)}{2}=\frac{(n+1) n}{2}\) so \(C(n+1)\) is We're done!
© Albert R Meyer \(\quad\) February 24, 2012```

