Mathematics for Computer Science MIT 6.042J/18.062J

Simple Graphs: Coloring

Flight Gates flights need gates, but times overlap.
how many gates needed?
(c) ${ }^{(1) 89(2)}$ Albert R Meyer, April 5, 2013 coloring. 2

Color the vertices
Color vertices so that adjacent vertices have different colors. $\min \#$ distinct colors needed $=$ $\min \#$ gates needed
(c) ${ }^{-1+8)(2)(2)}$ Albert R Meyer, April 5, 2013 coloring. 6

Final Exams
subjects conflict if student
takes both, so
need different time slots.
how short an exam period?

```
Conflicting Allocation Problems
    # separate habitats to house
        different species of animals, some
        incompatible with others?
    # different frequencies for radio
        stations that interfere with each
        other?
    # different colors to color a map?
```

(c) ${ }^{(1)}()^{(2)}$
Albert R Meyer, April 5, 2013
\qquad

Planar Four Coloring

any planar map is 4-colorable. 1850's: false proof published (was correct for 5 colors). 1970's: proof with computer 1990's: much improved
(c) ${ }^{(1) 8(9)(2)}$ Albert R Meyer, April 5, 2013 coloring. 14

(c) (i) (s) (2)

Albert R Meyer, April 5, 2013 \qquad

all degrees $\leq k$, implies

$$
\chi(G) \leq k+1
$$

very simple algorithm...

開㳔
"Greedy" Coloring
...color vertices in any order. next vertex gets a color different from its neighbors.
$\leq k$ neighbors, so
$k+1$ colors always work

```
*)
    coloring arbitrary graphs
    2-colorable? --easy to check
    3-colorable? --hard to check
                            (even if planar)
find }\chi(G)\mathrm{ ? --theoretically
    no harder than 3-color, but
    harder in practice
cc)(5)(5)
    Albert R Meyer, April 5, 2013
```

