

Venn Diagram for 2 Sets

@(O)(O)	Albert R Meyer	February 19, 2014	sets-ops.2


```
00.[0%
```



```
    A\cup(B\capC)=(A\cupB)\cap(A\cupC)
proof: Show these have the same
    elements, namely,
x\in Left Hand Set iff x\in RHS
for all x.
A set-theoretic equality
```

00.[%%

```

```

 A\cup(B\capC)=(A\cupB)\cap(A\cupC)
 proof: }x\inA\cup(B\capC) if
x\inA OR }x\in(B\capC) (def of U) iff
x\inA OR (x\inB AND x\inC) (def n) iff
(x\inA OR x\inB) AND (}x\inA\mathrm{ OR }x\inC
(by the equivalence)
A set-theoretic equality (ive)

```

\(A \cup(B \cap C)=(A \cup B) \cap(A \cup C)\) proof uses fact from last time:
\(P\) OR (Q AND R) equiv ( P OR Q) AND ( P OR R)
```

[0.0!%
A set-theoretic equality
A\cup(B\capC)=(A\cupB)\cap(A\cupC)
proof: }x\inA\cup(B\capC) if
x\inA OR }x\in(B\capC)\quad(def of U) iff
P OR(Q AND R) (def n)iff
(P OR Q) AND (P OR R)
(by the equivalence)

```
```

***:9
*

```

```

proof:
(}x\inA\mathrm{ OR }x\inB)AND(x\inA OR x\inC) if
(x\inA\cupB)AND(x\inA\cupC) (def U) iff
x\in(A\cupB)\cap (A\cupC) (def \cap).
QED

```
\begin{tabular}{|c|c|c|c|}
\hline 6 & 9 & 13 & 7 \\
\hline 12 & & 10 & 5 \\
\hline 3 & 1 & 4 & 14 \\
\hline 15 & 8 & 11 & 2 \\
\hline
\end{tabular}
complement

\[
\bar{A}::=D-A=\{x \mid x \notin A\}
\]
```

