

Familiar sets
real numbers \mathbb{R} complex numbers \mathbb{C} integers \mathbb{Z} empty set \varnothing

\section*{| 6 | 9 | 13 | 7 |
| :---: | :---: | :---: | :---: |
| 12 | | 10 | 5 | \\ | 12 | | 10 | 5 |
| :---: | :---: | :---: | :---: |
| 3 | 1 | 4 | 14 | \\ | 3 | 1 | 4 | 14 |
| :--- | :--- | :--- | :--- | :--- |
| | | 4 | | \\ | | | | 11 |
| :--- | :--- | :--- | :--- |
| 15 | 8 | 11 | 2 |}

A set of 4 things

$\{7$, "Albert R.", $\pi / 2, T\}$
A set with 4 elements: two numbers, a string, and a Boolean. Same as
$\{T, "$ Albert R." $7, \pi / 2\}$
-- order doesn't matter


```
00.[0]
*)
Synonyms for Membership
x\inA
x is an element of A
x is in A
examples:
\(7 \in \mathbb{Z}, \quad 2 / 3 \notin \mathbb{Z}, \mathbb{Z} \in\{T, \mathbb{Z}, 7\}\)
\(x\) is a member of \(A: x \in A\)
    \(\pi / 2 \in\{7\), "Albert R.", \(\pi / 2, T\}\)
    \(14 / 2 \in\)
    \(\pi / 3 €\)

\section*{\begin{tabular}{|c|c|c|c|}
\hline 6 & 9 & 13 & 7 \\
\hline 12 & & 10 & 5 \\
\hline & & & 4 \\
\hline
\end{tabular}}
\begin{tabular}{|c|c|cc|c|}
\hline 12 & & 10 & 5 \\
\hline 3 & 1 & 4 & 14 \\
\hline & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|lll|}
\hline 15 & 8 & 11 & 2 \\
\hline
\end{tabular}
\(A \subset B \quad A\) is a subset of \(B\) \(A\) is contained in \(B\) Every element of \(A\) is also an element of \(B\) : \(\forall x[x \in A\) IMPLIES \(x \in B]\)


\section*{\begin{tabular}{|c|c|c|c|}
\hline 6 & 9 & 13 & 7 \\
\hline 12 & & 10 & 5 \\
\hline 3 & & & \\
\hline
\end{tabular} \\ \begin{tabular}{|c|ccc|}
\hline 12 & & & 5 \\
\hline \(\mathbf{3}\) & 1 & 4 & 14 \\
\hline 15 & 8 & 11 & 2 \\
\hline
\end{tabular} \\ Defining Sets \\ The set of elements \(x\) in \(A\) such that \(P(x)\) is true. \\ \[
\{x \in A \mid P(x)\}
\]}


\section*{\begin{tabular}{|c|c|c|c|}
\hline 6 & 9 & 13 & 7 \\
\hline 12 & & 10 & 5 \\
\hline 3 & & \\
\hline
\end{tabular} \begin{tabular}{|c|c|c|c|}
\hline 12 & & 10 & 5 \\
\hline \(\mathbf{3}\) & 1 & 4 & 14 \\
\hline 15 & 8 & 11 & 2 \\
\hline
\end{tabular} \\ Defining Sets \\ The set \(E\) of even integers: \(\{n \in \mathbb{Z} \mid n\) is even \(\}\)}
Power Set
\begin{tabular}{rl} 
pow \((A)::=\) all the subsets of \(A\) \\
& \(=\{B \mid B \subseteq A\}\)
\end{tabular}
example:
pow(\{T, \(F\})=\{\{T\},\{F\},\{T, F\}, \varnothing\}\)
\(E \in \operatorname{pow}(\mathbb{Z}), \quad \mathbb{Z} \in \operatorname{pow}(\mathbb{R})\)
\(B \in \operatorname{pow}(A)\) IFF \(B \subseteq A\)```

