\section*{| 6 | 9 | 13 | 7 |
| :---: | :---: | :---: | :---: |
| 12 | | 10 | 5 |
| | | | | \\ | 12 | | 10 | 5 |
| :---: | :---: | :---: | :---: |
| 3 | 1 | 4 | 14 |
| | | | 11 | \\ | 3 | 1 | 4 | 14 |
| :---: | :---: | :---: | :---: |
| 15 | 8 | 11 | 2 |}

Mathematics for Computer Science
MIT 6.042J/18.062J

Representing Partial Orders

6	9	13	7
12		10	5
			4

12		10	5
3	1	4	14
		1	

3	1	4	14
15	8	11	2

proper subset relation
$A \subset B$ means
B has everything that A has and more: $B \not \subset A$
©() (1) (2)
Albert R Meyer March 22, 2013
rep-po. 2

as \subset example

\section*{| 6 | 9 | 13 | 7 |
| :---: | :---: | :---: | :---: |
| 12 | | 10 | 5 |
 | 12 | | 10 | 5 |
| :---: | :---: | :---: | :---: |
| 3 | 1 | 4 | 14 |
 | 3 | 1 | 4 | 14 |
| :---: | :---: | :---: | :---: | :---: |
| 15 | 8 | 11 | 2 |}

same shape

as \subset example isomorphic

c(1)
Albert R Meyer March 22, 2013
rep-po. 8

G_{1} isomorphic to G_{2} iff
\exists bijection $f: V_{1} \rightarrow V_{2}$ with
$u \rightarrow v$ in E_{1} IFF $f(u) \rightarrow f(v)$ in E_{2}

| 15 | 8 | 11 | 2 |
| :--- | :--- | :--- | :--- | :--- |

two graphs are isomorphic when there is an

edge-preserving

bijection
of their vertices.

©()(1)(2)	Albert R Meyer	March 22, 2013	rep-po.10

6	9	13	7
12		10	5

3	1	4	14
		4	4

p.o. represented by \subset

Theorem: Every strict partial order is isomorphic to a collection of subsets partially ordered by \subset.
cc) $1 \times(1)$

Albert R Meyer March 22, 2013

6	9	13	7
12		10	5
	1		

12		10	
3	1	4	14
			1

-

proof: map element, a, to the set of elements below it. a maps to $\{b \in A \mid b R a$ OR $b=a\}$

$$
f(a)::=R^{-1}(a) \cup\{a\}
$$

