

\square
 Binary relations

A binary relation associates elements of one set called the domain, with elements of another set called the codomain
\qquad
 $R(J a s o n, 6.042)$ prefix (Jason, 6.042) $\in R$ (Jason, 6.042) $\operatorname{graph}(R)$

Images under R

$$
\begin{aligned}
R(\text { Jason })= & \text { subjects Jason is } \\
& \text { registered for } \\
= & \{6.042,6.012\}
\end{aligned}
$$

February 21, 2011


```
Images under \(R\)
\(R(\{J a s o n\), Yihui \(\})=\) subjects with Jason or Yihui registered \(=\{6.042,6.012,6.004\}\)
```


Images under R
$R(X)$:: endpoints of arrows from points in X
$\{j \in J \mid \underbrace{\exists d \in X . d R j}\}$ an arrow from X goes to j

$$
\begin{aligned}
& R^{-1}(6.012)=\{\text { Jason, Yihui }\} \\
& R^{-1}(\{6.012,6.003\})=
\end{aligned}
$$

"registers" relation R^{-1}
StuDent lec 3 T. 21

Images under R^{-1}
$R^{-1}(6.012)=\{J a s o n$, Yihui $\}$ $R^{-1}(\{6.012,6.003\})=$
\{Jason, Joan, Yihui\}
$R^{-1}(Y)$ aka the inverse image of Y under R
@(®®®
Albert R Meyer February 21, 2011
lec 3 T. 22

$R(V(X))=$ subJects that advisees of profs in X are registered for
(a)ఆ® Albert R Meyer February 21, 2011 lec 3 T .28

$\begin{aligned} \mathrm{R} \circ \mathrm{~V}::= & \text { "prof has advisee } \\ & \text { registered for" } \\ p(\mathrm{R} \circ \mathrm{~V}) \mathrm{j}::= & \text { prof } \mathrm{p} \text { has an advisee } \\ & \text { registered in subject } j \end{aligned}$

Composing R and V

$$
\begin{gathered}
(R \circ v)(x)::=R(v(x)) \\
R \circ V
\end{gathered}
$$

is the composition of R and V
©(©®® \qquad

品

ARM ($R \circ V$) 6.012 because ARM V Yihui AND Yihui R 6.012 $p(\underbrace{R \circ V}) j$ IFF

$$
\exists d \in D .[p \underbrace{p d \text { AND } d R} j]
$$ note: V, R in reverse order

©®®® Albert R Meyer February 21,2011 lec 3 T. 34

set operations on relations
Profs should not teach their advisees: $\forall p \forall j$. NOT $(p(R \circ V) j$ AND $p T j)$
$T \cap(R \circ V)=\varnothing$

set operations on relations Profs should not teach their advisees: $\forall p \forall j$. NOT $(p(R \circ V) j$ AND $p T j)$ $R \circ V \subseteq \bar{T}$

\section*{| 6 | 9 | 13 | 7 |
| :---: | :---: | :---: | :---: |
| 12 | | 10 | 5 |
| | | | 4 |
 Binary relations}

A binary relation, R, from a set A to a set B associates elements of A with elements of B.
\qquad

Binary relation R from A to B domain R codomain

(o)Qe

Functions are relations
relation $F: A \rightarrow B$ is a function
IFF $|F(a)| \leq 1$

IFF

$\left[a F b\right.$ AND $\left.a F b^{\prime}\right]$ IMPLIES $b=b^{\prime}$
@(®)(

