\section*{| 6 | 9 | 13 | 7 |
| :---: | :---: | :---: | :---: |
| 12 | | 10 | 5 | \\ | 12 | | 10 | 5 |
| :---: | :---: | :---: | :---: |
| 3 | 1 | 4 | 14 |
| | | | 11 |}

Relational Mapping Properties
 (Archery)

Binary relation R from A to B

©($(\mathbb{1}(1)$ Albert R Meyer
February 22,2012
lec 3W. 2

total relation
R is total iff

$$
A=R^{-1}(B)
$$

cc) ©®® Albert R Meyer

February 22, 2012
lec 3W. 8

$$
\begin{aligned}
& g_{0}: D \rightarrow \mathbb{R} \\
& g_{0}(x, y)::=\frac{1}{x-y}
\end{aligned}
$$

where $D::=\mathbb{R}^{2}-\{(x, y) \mid x=y\}$ $90, g$ have the
same graph, different domains
g_{0} is total

$$
\begin{aligned}
& g: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \\
& g(x, y)::=\frac{1}{x-y}
\end{aligned}
$$

domain $(g)=$ all pairs of reals codomain (g) = all reals But g is not total:

$$
g(r, r) \text { not defined }
$$

雷 0

R is a surjection iff

$$
R(A)=B
$$

