Recursive Functions

To define a function, f, on a recursively defined set R, define

- $f(b)$ explicitly for each base case $b \in R$
- $f(c(x))$ for each constructor, c, in terms of x and $f(x)$

Recursive function on M

Def. tree-depth(s) for $s \in M$

- $td(\lambda) ::= 0$
- $td([s]t) ::= 1 + \max\{td(s), td(t)\}$

Recursive function on \mathbb{N}

- $expt(k, 0) ::= 1$
- $expt(k, n+1) ::= k \cdot expt(k, n)$

--uses recursive def of \mathbb{N}:

- $0 \in \mathbb{N}$
- if $n \in \mathbb{N}$, then $n + 1 \in \mathbb{N}$
Recursive Functions

Summary:
- \(f : \text{Data} \rightarrow \text{Values} \)
- \(f(b) \) defined directly for base \(b \)
- \(f(\text{cnstr}(x)) \) defined using \(f(x) \), \(x \)

Length versus Depth

Lemma: \(|r| + 2 \leq 2^{td(r) + 1}\) for all \(r \in M \)

Proof by Structural Induction

Base Case: \([r = \lambda]\)

\[|\lambda| + 2 = 0 + 2 = 2 = 2^{0+1} = 2^{td(\lambda)+1} \]

OK!

Size versus Depth

Constructor Case: \([r = [s]t]\)

By induction hypothesis:

\[|s| + 2 \leq 2^{td(s)+1} \]

\[|t| + 2 \leq 2^{td(t)+1} \]

\[|r| + 2 = |[s]t| + 2 \quad \text{def. of } r \]

\[= (|s| + |t| +2) + 2 \quad \text{def. of length} \]

\[= (|s| + 2) + (|t| + 2) \]

\[\leq 2^{td(s)+1} + 2^{td(t)+1} \quad \text{induction hyp.} \]

\[\leq 2 \cdot \max(2^{td(s)}, 2^{td(t)}) + 2 \cdot \max(2^{td(s)}, 2^{td(t)}) + 1 \]

\[= 2 \cdot 2^{\max(2^{td(s)}, 2^{td(t)})+1} \leq 2 \cdot 2^{td(r)} \quad \text{def. of } d(r) \]

\[= 2^{td(r)+1} \quad \text{QED!} \]
positive powers of two

\[2 \in \text{PP2} \]

if \(x, y \in \text{PP2} \), then \(x \cdot y \in \text{PP2} \)

\[2, 2 \cdot 2, 4 \cdot 2, 4 \cdot 4, 4 \cdot 8, \ldots \]

\[2, 4, 8, 16, 32, \ldots \in \text{PP2} \]

log of \(\text{PP2} \)

\[\log_2(2) ::= 1 \]

\[\log_2(x \cdot y) ::= \log_2(x) + \log_2(y) \]

for \(x, y \in \text{PP2} \)

\[\log_2(4) = \log_2(2 \cdot 2) = 1 + 1 = 2 \]

\[\log_2(8) = \log_2(2 \cdot 4) = \log_2(2) + \log_2(4) = 1 + 2 = 3 \]

loggy function on \(\text{PP2} \)

\[\loggy(2) ::= 1 \]

\[\loggy(x \cdot y) ::= x + \loggy(y) \]

for \(x, y \in \text{PP2} \)

\[\loggy(4) = \loggy(2 \cdot 2) = 2 + 1 = 3 \]

\[\loggy(8) = \loggy(2 \cdot 4) = 2 + \loggy(4) = 2 + 3 = 5 \]

\[\loggy(16) = \loggy(8 \cdot 2) = 8 + \loggy(2) = 8 + 1 = 9 \]

\[\loggy(16) = \loggy(2 \cdot 8) = 9 \]

\[\loggy(16) = \loggy(2 \cdot 8) = \]

\[= 2 + \loggy(8) = 2 + 5 = 7 \]

WAIT A SEC!
ambiguous constructors
The Problem: more than one way to construct elements of PP2 from
\(\text{cnstrct}(x,y) = x \cdot y \)
16 = \(\text{cnstrct}(8,2) \) but also
16 = \(\text{cnstrct}(2,8) \)
ambiguous

ambiguous recursive defs
problem to watch out for:
recursive function on datum, \(e \), is defined according to what constructor created \(e \).
If 2 or more ways to construct \(e \), then which definition to use?