

```
Recursive function on \(M\)
Def. tree-depth(s) for \(s \in M\)
    \(\operatorname{td}(\lambda) \quad::=0\)
td( [s] \(\dagger\) ) ::=
    \(1+\max \{\operatorname{td}(s), \operatorname{td}(t)\}\)
```


Recursive Functions
 summary:
 $f:$ Data \rightarrow Values
 $f(b)$ def'd directly for base b $f(\operatorname{cnstr}(x))$ def'd using $f(x), x$

${ }^{4}$
 Size versus Depth

Constructor case: [$r=[s] \dagger]$
by ind. hypothesis:

$$
\begin{aligned}
& |s|+2 \leq 2^{t d(s)+1} \\
& |\dagger|+2 \leq 2^{t d(t)+1}
\end{aligned}
$$

Length versus Depth
Lemma: $\|r\|+2 \leq 2^{+d(r)+1}$
\quad for all $r \in M$
Proof by Structural Induction
Base case: $[r=\lambda]$
$\|\lambda\|+2=0+2=2=2^{0+1}=2^{t d}(\lambda)+1$
$O K!$

$$
\begin{aligned}
& \text { Size versus Depth } \\
& |r|+2=|[s] \dagger|+2 \text { def. of } r \\
& =(|s|+|+|+2)+2 \text { def. of length } \\
& =(|s|+2)+(|+|+2) \\
& \leq 2^{\mathrm{td}(\mathrm{~s})+1}+2^{\mathrm{td}(t)+1} \quad \text { induction hyp. } \\
& \leq 2^{\max (t d(s), t d(t))+1}+2^{\max (t d(s), t d(t))+1} \\
& =2 \cdot 2^{\max (t d(s), t d(t))+1} \leq 2 \cdot 2^{t d(r)} \text { def. of } d(r) \\
& =2^{t d(r)+1} \text { QED! }
\end{aligned}
$$

positive powers of two
$2 \in \mathrm{PP} 2$
if $x, y \in \mathrm{PP} 2$, then $x \cdot y \in \mathrm{PP} 2$
$2,2 \cdot 2,4 \cdot 2,4 \cdot 4,4 \cdot 8, \ldots$
2


```
    loggy(2)::= 1
    loggy(x\cdoty)::= x+loggy(y)
        for x,y \in PP2
    loggy(4)= loggy(2.2)=2+1=3
    loggy(8)=\operatorname{loggy(2.4)=2 + loggy(4)}
    =2+3=5
    loggy(16) = loggy(8 2) = 8+\operatorname{loggy(2)}
        = 8+1=9
```


$\log g y(16)=\log g y \cdot 2)=9$ WAIT A SEC!:
$\begin{gathered} \operatorname{loggy}(16)=\log g y(2 \cdot 8) \\ =2+\log y(8)=2+5 \\ =7 \end{gathered}$


```
The Problem: more than one way to
construct elements of PP2 from
cnstrct(x,y)=x - y
    16= cnstrct(8,2) but also
    16= cnstrct(2,8)
        ambiguous
    Albert R Meyer, March 2,2016```

