Linearity of Expectation

```
Linearity of Expectation
R,S random variables, a,b
constants
    E[aR + bS] =
        aE[R] + bE[S]
    proof by rearranging terms
    in the defining sum
```

Linearity of Expectation
R, S random variables, a, b constants
$E[a R+b S]=$ $a E[R]+b E[S]$

even if R,S are dependent

Linearity of Expectation

$E[a A+b B]=$
$\sum_{\omega}(a A(\omega)+b B(\omega)) \cdot \operatorname{Pr}[\omega]=$
$a\left(\sum_{\omega} A(\omega) \cdot \operatorname{Pr}[\omega]\right)+b\left(\sum_{\omega} B(\omega) \cdot \operatorname{Pr}[\omega]\right)$
$=a E[A]+b E[B]$
QED

Albert R Meyer, May 8, 2013
Expectation of indicator I_{A}

$$
\begin{aligned}
E\left[I_{A}\right]:: & =1 \cdot \operatorname{Pr}\left[I_{A}=1\right]+ \\
& 0 \cdot \operatorname{Pr}\left[I_{A}=0\right] \\
= & \operatorname{Pr}\left[I_{A}=1\right] \\
= & \operatorname{Pr}[A]
\end{aligned}
$$

$$
\text { Albert R Meyer, May 8, } 2013
$$

Expected \#Heads
$E\left[\# H^{\prime} s\right]=E\left[H_{1}+H_{2}+\cdots+H_{n}\right]$
so by linearity
$=E\left[H_{1}\right]+E\left[H_{2}\right]+\cdots+E\left[H_{n}\right]$
$=n \cdot \operatorname{Pr}[$ Head $]=n p$
8正

Expected \#Heads in n Flips H_{i} is indicator for Head on $i^{\text {th }}$ flip
$\# H^{\prime} s=H_{1}+H_{2}+\cdots+H_{n}$

Expected \#hats returned n men each check their hat. Hats get scrambled so pr[ith man gets own hat back]

$$
=1 / n
$$

How many men do we expect will get their hat back?

筬踢 Expected \#hats returned
R_{i} indicates $i^{\text {th }}$ man go \dagger his hat returned.

Notice R_{i} and R_{j} are not independent!

[^0]Expected \#hats returned
R_{i} indicates $i^{\text {th }}$ man got his hat returned. Even so $E[\#$ hats returned $]=$ $E\left[R_{1}+R_{2}+\cdots+R_{n}\right]=$ $E\left[R_{1}\right]+E\left[R_{2}\right]+\cdots+E\left[R_{n}\right]$
$=n(1 / n)=1$
@(1)
Albert R Meyer, May 8, 2013

Independent Product of Expectations
 For independent X, Y
 $E[X \cdot Y]=E[X] \cdot E[Y]$

proof by rearranging terms in the defining sum again
\qquad

Expectations
$\begin{aligned} \mathrm{E}[\mathrm{XY}]:: & =\sum_{x, y} x y \operatorname{Pr}[\mathrm{X}=x \text { AND } \mathrm{Y}=\mathrm{y}] \\ \text { (indep) } & =\sum_{x, y} x y \operatorname{Pr}[\mathrm{X}=x] \operatorname{Pr}[\mathrm{Y}=y] \\ & =\Sigma_{y} \sum_{x} x y \operatorname{Pr}[\mathrm{X}=x] \operatorname{Pr}[\mathrm{Y}=\mathrm{y}] \\ = & \Sigma_{y}\left(y \operatorname{Pr}[\mathrm{Y}=y] \sum_{x} \times \operatorname{Pr}[\mathrm{X}=x]\right) \end{aligned}$

Blunders
Don't assume product rule
without independence.
Example: Say X takes positive
and negative values with
equal probability. So
$E[X]=0<E\left[X^{2}\right]$

```
Independent Product of
    Expectations
E[XY]: \(:=\sum_{x, y} x y \operatorname{Pr}[X=x\) and \(Y=y]\)
(indep) \(=\sum_{x, y} x y \operatorname{Pr}[X=x] \operatorname{Pr}[Y=y]\)
    \(=\Sigma_{y} \Sigma_{x} x y \operatorname{Pr}[X=x] \operatorname{Pr}[Y=y]\)
    \(=\Sigma_{y}\left(y \operatorname{Pr}[Y=y] \Sigma_{x} x \operatorname{Pr}[X=x]\right)\)
    \(=\left(\sum_{x} x \operatorname{Pr}[X=x]\right)\left(\sum_{y}\right.\) y \(\left.\operatorname{Pr}[Y=y]\right)\)
    \(=E[X] E[Y] \quad Q E D\)

\section*{Blunders}

Don't assume product rule without independence.
Example: Say \(X\) takes positive and negative values with equal probability. So \(E[X] \cdot E[X]=0<E\left[X^{2}\right]\)
Blunders
\[
E\left[\frac{X}{Y}\right] \neq \frac{E[X]}{E[Y]}
\]
Don't assume a reciprocal
expectation rule. In general,
even with independence```


[^0]:    (1) Chinese Banquet

    Say $n$ people sit around a spinner (a "lazy-Susan") with n different dishes.
    Spin randomly.
    How many people do we expect will get same dish as initially?

