

Carnival Dice

Example: choose 5, then roll 2,3,4: lose \$1 roll 5,4,6: win \$1 roll 5,4,5: win \$2 roll 5,5,5: win \$3

Carnival Dice
 Choose a number from 1 to 6 , then roll 3 fair dice:
 win $\$ 1$ for each match lose $\$ 1$ if no match

Carnival Dice	
$\operatorname{Pr}[0$ fives $]$	$=\left(\frac{5}{6}\right)^{3}=\frac{125}{216}$
$\operatorname{Pr}[1$ five $]$	$=\binom{3}{1}\left(\frac{5}{6}\right)^{2}\left(\frac{1}{6}\right)^{2}$
$\operatorname{Pr}[2$ fives $]$	$=\binom{3}{2}\left(\frac{5}{6}\right)^{1}\left(\frac{1}{6}\right)^{2}$
$\operatorname{Pr}[3$ fives $]$	$=\left(\frac{1}{6}\right)^{3}$
Alber R Merer. \quad Moy 8,2013	

Carnival Dice
$\frac{125 \cdot(-1)+75 \cdot 1+15 \cdot 2+1 \cdot 3}{216}$
$=-\frac{17}{216} \approx-8$ cents
So average expect to win:
(1)

Expected Value
 The expected value of random variable R is the average value of R --with values weighted by their probabilities

Carnival Dice
You can "expect" to lose 8 cents
per play. But you never actually
lose 8 cents on any single play,
this is just your average loss.

$$
\begin{aligned}
& \text { Expected Value } \\
& \text { The expected value of } \\
& \text { random variable } R \text { is } \\
& E[R]::=\sum_{v \in \text { range(} R \text { R }} v \cdot \operatorname{Pr}[R=v] \\
& \text { so } E[\$ \text { win in Carnival }]=-\frac{17}{216}
\end{aligned}
$$

Alternative definition

 $E[R]=\sum_{\omega \in S} R(\omega) \cdot \operatorname{Pr}[\omega]$this form helpful in some proofs

$$
E[R]=\sum_{\omega \in S} R(\omega) \cdot \operatorname{Pr}[\omega]
$$

proof of equivalence:

$$
[R=v]::=\{\omega \mid R(\omega)=v\} \text { so }
$$

$$
\operatorname{Pr}[R=v]::=\sum_{\omega \in[R=v]} \operatorname{Pr}[\omega]
$$

$$
\square
$$

We get away with sums			
instead of integrals because			
the sample space is assumed			
countable:			
$S=\left\{\omega_{0}, \omega_{1, \ldots} \ldots \omega_{n} \ldots \ldots\right\}$			
@(1)®0	Albert R Meyer,	May 8, 2013	

Rearranging Terms
It's safe to rearrange terms
in sums because we implicitly
assume that the defining
sum for the expectation is
absolutely convergent
Rearranging Terms
It's safe to rearrange terms
in sums because

Ind

$$
\begin{aligned}
& \text { Absolute convergence } \\
& E[R]::=\sum_{v \in \operatorname{range}(R)} v \cdot \operatorname{Pr}[R=v]
\end{aligned}
$$

the terms on the right could be rearranged to equal anything at all when the sum is not absolutely convergent
Expected Value
also called
mean value, mean, or
expectation
Expectations \& Averages
From a pile of graded exams,
be its score. Now E[S] equals
the average exam score

[^0]```
*) Expectations & Averages
We can estimate averages
by estimating expectations
of random variables based
on picking random elements
sampling
Albert R Meyer, May 8, 2013

On the other hand \(\operatorname{Pr}[R>E[R]] \geq 1-\varepsilon\) is possible for all \(\varepsilon>0\) For example, almos \(\dagger\) everyone has an above average number of fingers.
```

Expectations \& Averages
For example, it is impossible for
all exams to be above average
(no matter what the townspeople
of Lake Woebegone say):
Pr[R>E[R]] < 1

```
```


[^0]:    Expectations \& Averages
    We can estimate averages by estimating expectations
    of random variables

