

Expected \#Heads
n independent flips of a coin with bias p for Heads. How many Heads expected?

$$
E\left[B_{n, p}\right]::=\sum_{k=0}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Expected \#Heads n independent flips of a coin with bias p for Heads. How many Heads expected?

E[\# Heads]
$=E\left[B_{n, p}\right]$
@(1)

Expected \#Heads

n independent flips of a coin with bias p for Heads. How many Heads expected?
$E\left[B_{n, p}\right]::=\sum_{k=0}^{n} k\binom{n}{k} p^{k} q^{n-k}$

	Binomial Expectation
	$E\left[B_{n, p}\right]::=\sum_{k=0}^{n} k\binom{n}{k} p^{k} q^{n-k}$
	$n=\frac{1}{p} \sum_{k=0}^{n} k\binom{n}{k} p^{k} q^{n-k}$
@ぁ	nersmeem was mis

\quad Binomial Expectation
$E\left[\begin{array}{c}\left.B_{n, p}\right]::=\sum_{k=0}^{n} k\binom{n}{k} p^{k} q^{n-k} \\ n \quad=\frac{1}{p} E\left[B_{n, p}\right] \\ n p=E\left[B_{n, p}\right]\end{array}\right.$
$\quad n$

