

Mean Time to "Failure"
comes up until a Head
$\operatorname{Pr}[$ Head $=p$
$F::=$ \#flips to 1st Head
$\quad E[F] ?$

$$
\begin{aligned}
& \text { Mean Time to "Failure" } \\
& \operatorname{Pr}[F=1]=\operatorname{Pr}[H]=p \\
& \operatorname{Pr}[F=2]=\operatorname{Pr}[\mathrm{TH}]=q \cdot p \\
& \operatorname{Pr}[F=3]=\operatorname{Pr}[T \mathrm{TH}]=q^{2} \cdot p \\
& \operatorname{PDF} F_{F}(n)=q^{n-1} p \\
& \text { Geometric Distribution }
\end{aligned}
$$

$$
\begin{aligned}
& E[F]=\sum_{n>0} n \cdot \operatorname{Pr}[F=n] \\
& =\sum_{n>0} n \cdot q^{n-1} p \\
& =p{\underline{\sum n \geq 0} 0(n+1) q^{n}}^{n} \\
& 1 \\
& (1-q)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Mean Time to "Failure" } \\
& E[F]=\sum_{n>0} n \cdot \operatorname{Pr}[F=n] \\
& =\sum_{n>0} n \cdot q^{n-1} p \\
& =p \frac{1}{(1-q)^{2}} \\
& \text { (1)(1)(2)}
\end{aligned}
$$

$E[F]=$

$E[F]=$

$\mathrm{E}\left[\mathrm{F} \mid 1^{\text {st }}\right.$ is H$] \cdot \mathrm{p}$

Albert R Meyer,

E[\#fails in 1 try] = p E[\#fails in n tries $=n p$ E[\#tries between fails]
$=\frac{\# \text { tries }}{\# \text { fails }}=\frac{n}{n p}=\frac{1}{p}$
©(ranvarfail. 18

