

Uniform Random Variables
..all values equally likely "threshold" variable was uniform:

$$
\begin{aligned}
& \operatorname{Pr}[Z=0]=\cdots=\operatorname{Pr}[Z=6] \\
& =\frac{1}{7} \\
& \text { (1) (1)(} \\
& \text { Albert R Meyer May } 6,2013
\end{aligned}
$$

 Lemma. If R_{1}, R_{2}, R_{3} have the same range, are mutually independent, and R_{1} is uniform, then

$$
\left[R_{1}=R_{2}\right],\left[R_{2}=R_{3}\right],\left[R_{1}=R_{3}\right]
$$

are pairwise independent. Obviously NOT 3-way indep.

R_{1} is independent of $\left[R_{2}=R_{3}\right]$ \& has probability p of equaling each value So it equals a common value of R_{2} \& R_{3} with probability p That is,

$$
\operatorname{Pr}\left[R_{1}=R_{2} \mid R_{2}=R_{3}\right]=\operatorname{Pr}\left[R_{1}=R_{2}\right]=p
$$

Binomial Random Variable

$B_{n, p}::=$ \# heads in n mutually indep flips. Coin may be biased. So 2 parameters
$n::=\#$ flips, $p::=\operatorname{Pr}\{$ head $\}$
for $n=5, p=2 / 3$
$\operatorname{Pr}[\mathrm{HHTTH}]=$
$\operatorname{Pr}[\mathrm{H}\} \cdot \operatorname{Pr}[\mathrm{H}] \cdot \operatorname{Pr}[\mathrm{T}] \cdot \operatorname{Pr}[\mathrm{T}] \cdot \operatorname{Pr}[\mathrm{H}]$
(by independence)
©(1)(®)
Albert R Meyer May 6,2013

	Binomial Random Variable
$B_{n, p}::=$ \# heads in n mutually indep flips.	
Coin may be biased. So 2 parameters	
	n ::= \# flips, p ::= Pr\{head\}
	$\left.B_{n, p}=i \quad\right]=\# s e$
	$\binom{n}{i} p^{i}(1-p)^{n-}$

Binomial Random Variable
$B_{n, p}::=$ \# heads in n mutually indep flips. Coin may be biased. So 2 parameters
$n::=\#$ flips, $p::=\operatorname{Pr}\{$ head $\}$
Pr[get i H's, n-i T's] = \#seq's pr[seq]

$$
\binom{n}{i} p^{i}(1-p)^{n-i}
$$

```
渞:**** Density & Distribution
Probability Density Function
of random variable R,
    PDFF
So
    PDF
    for v in range of uniform }
```

Density \& Distribution
Density \& Distribution

```

Key observation:
The Probability Density \&
Cumulative Distribution Functions of R, do not depend on the sample space
```

```
Density & Distribution
```

```
Density & Distribution
Probability Density Function
Probability Density Function
of random variable R,
of random variable R,
    PDF
    PDF
Cumulative Distribution
Cumulative Distribution
    CDF 
    CDF 
@(8)@
@(8)@
Meyer May 6,2013
```

Meyer May 6,2013

```
```

