Mathematics for Computer Science
MIT 6.042J/18.062J

Introduction to Random Variables Bigger Number Game

Albert R Meyer May 6,2013
ranvarbigger. 1

虽: Guess the Bigger Number
Team 1:
-Write two integers from 0 to 7 on two pieces of paper

- Show to Team 2 face down

Team 2:

- Expose one paper and look at number
- Either stick or switch to other number

Team 2 wins if gets larger number
©(®)
Albert R Meyer May 6, 2013
ranvarbigger. 2

Do you think one team has an advantage? Which one?

You might like to try playing the game a few times with some teammates before seeing the answers below.

```
䠔:
Strategy for Team 2
- pick a paper to expose, giving each paper equal probability.
- if exposed number is "small" then switch, otherwise stick. That is switch if \(\leq\) threshold \(Z\) where \(Z\) is a random integer \(\in[0,7)\)

Analysis of Team 2 Strategy
Let low < high be the integers chosen by Team 1. There are three cases: Albert R Meyer May 6, 2013 anvarbigger. 6

\footnotetext{

Analysis of Team 2 Strategy
Case H: high \(\leq Z\)
Team 2 will switch, so wins iff low card gets exposed \(\operatorname{Pr}[\) Team 2 wins \(\mid H]=\frac{1}{2}\)
}
```

**:137
Analysis of Team 2 Strategy
Case L: Z < low
Team 2 will stick, so wins iff
high card gets exposed
Pr[Team 2 wins | L] = =
Albert R Meyer May 6,2013

```
Analysis of Team 2 Strategy
So }\geq1/7\mathrm{ of time, sure win.
Rest of time, win 1/2.
Pr[Team 2 wins] =
Pr[win | M] Pr[M] +
    Pr[win|}|\overline{M}]\cdot\operatorname{Pr}[\overline{M}
```

Albert R Meyer May 6,2013

Analysis of Team 2 Strategy So $\geq 1 / 7$ of time, sure win. Rest of time, win 1/2. By Law of Total Probability
 So $\geq 1 / 7$ of time, sure win. Rest of time, win $1 / 2$. $\operatorname{Pr}[$ Team 2 wins] \geq

$$
1 \cdot \frac{1}{7}+\frac{1}{2} \cdot\left(1-\frac{1}{7}\right)=\frac{4}{7}
$$

```
*)
    So Team 2 has the advantage
```

Analysis of Team 2 Strategy
So Team 2 has the advantage, no matter what Team 1 does!
©(1)
Albert R Meyer May 6, 2013

\qquad

Random Variables
Informally: an RV is a number
produced by a random process:
- threshold variable Z
- number of exposed card
- number of larger card
- number of smaller card
nem

