Mathematics for Computer Science MIT $6.042 \mathrm{~J} / 18.062 \mathrm{~J}$

GCD's \& linear combinations:

The Pulverizer

GCD is a linear combination
Corollary:
The multiples of $\operatorname{gcd}(a, b)$ are exactly the linear combinations of a and b.

GCD is a linear combination
Theorem:
$\operatorname{gcd}(a, b)$ is an integer linear combination of a and b.

$$
\operatorname{gcd}(a, b)=s a+t b
$$

© (1) © Albert R Meyer March 6, 2015

```
#gcd(a,b)=sa+tb
    Proof: Show how to find coefficients s,t.
Method: apply Euclidean algorithm, finding coefficients as you go.
```

\quad Extending Euclid
In Euclid have
$g c d(x, y)=g c d(a, b)$.
Track $\operatorname{coeff} s, d, e, f$
$c a+d b=x$ and $e a+f b=y$
\quad Extending Euclid
In Euclid have
$g c d(x, y)=g c d(a, b)$.
Track coeff's c, d, e, f
$c a+d b=x$ and $e a+f b=y$
to start:
$y=b=0 a+1 b$
\quad Extending Euclid
In Euclid have
$g c d(x, y)=g c d(a, b)$.
Track coeff's c, d, e, f
$c a+d b=x$ and $e a+f b=y$
to start:
$x=a=1 a+0 b$
Extending Euclid
$x_{\text {next }}=y=e a+f b$
$y_{\text {next }}=r e m(x, y)=$
$x-q y=$
$c a+d b-q(e a+f b)$


```
*:*)
Finding s and t
Example: a=899, b=493
899=1.493+406 so 406=1\cdota+-1\cdotb
493=1.406+87 so 87=1.b-1.406
                        =-1\cdota+2\cdotb
406=4.87+58 so 58=1.406-4.87
87=1.58+29 = 5.a+-9.b
87-1.58+29 so 29=1.8Z =1.58
```



```
    done,gca`=-29
    the Pulverizer s}=-6,t=1
```

Finding s and \dagger
Example: $a=899, b=493$
$899=1 \cdot 493+406$ so $406=1 \cdot a+-1 \cdot b$
$493=1 \cdot 406+87$ so $87=1 \cdot b-1 \cdot 406$
$\quad=-1 \cdot a+2 \cdot b$
so $58=1.406-4.87$
$87=1 \cdot 58+29 \quad=5 \cdot a+-9 \cdot b$
$58=2 \cdot 29+0 \quad$ e- 0 a $11 \cdot b$
done, 9 c वた $=29$
(c) (1) (2)

Abert R Meyer March 6, 2015
pulverizer. 10

```
* Finding s>0 and t
    gcd(899,493) = -6.899 + 11.493
get positive coeff. for 899?:
=(-6+493k)\cdot899 + (11-899k).493
let k be 1:
    = 487.899-888.493
c) (1) (0)
Pulverizer is efficient
Same number of transitions as
Euclid

\footnotetext{
 Same number of transitions as Euclid, a few more adds/mults per transition.
So halts after at most \(10 \log _{2} b\) operations
}```

