Problem Set 8

Due: May 11

Reading:

- Chapter 15. Counting, Sections 15.8. Pigeonhole Principle and 15.9. Inclusion-Exclusion
- Chapter 17. Events and Probability Spaces

Problem 1. (a) Show that any odd integer x in the range $10^{9}<x<2 \cdot 10^{9}$ containing all ten digits $0,1, \ldots, 9$ must have consecutive even digits.
Hint: What can you conclude about the parities of the first and last digit?
(b) Show that there are 2 vertices of equal degree in any finite undirected graph with $n \geq 2$ vertices.

Hint: Cases conditioned upon the existence of a degree zero vertex.

Problem 2. (a) Let $S=\{1,2,3,4\}^{n}$ be the set of length- n sequences $\left(a_{1}, \ldots, a_{n}\right)$ where each a_{i} is chosen from $\{1,2,3,4\}$. What is $|S|$?
(b) How many of the sequences in S contain each of 1, 2, 3, and 4 at least once? Use Inclusion-Exclusion to find and prove your answer.
Hint: For $1 \leq i \leq 4$, define $S_{i} \subset S$ as the subset of sequences that do not contain i. What is $\left|S_{1}\right|$? How about $\left|S_{1} \cap S_{2}\right|$?

Problem 3.

The results of a round robin tournament in which every two people play each other and one of them wins can be modelled a tournament digraph-a digraph with exactly one directed edge between each pair of distinct vertices. We'll draw a directed edge $\langle v \rightarrow w\rangle$ if player v beats player w, and otherwise we'll include directed edge $\langle w \rightarrow v\rangle$.

An n-player tournament is k-neutral for some $k \in[0, n)$, when, for every set of k players, there is another player who beats them all. For example, being 1-neutral is the same as not having a "best" player who beats everyone else.

This problem will prove the existence of an n-player tournament that is 10 -neutral, if n is large enough. We will do this by reformulating the question in terms of probabilities. In particular, for any fixed n, we assign probabilities to each n-vertex tournament digraph by choosing a direction for the edge between any two vertices, independently and with equal probability for each edge.
(a) For any set S of 10 players, let B_{S} be the event that no contestant beats everyone in S. Express $\operatorname{Pr}\left[B_{S}\right]$ in terms of n.

[^0](b) Let Q be the event that the tournament digraph is not 10 -neutral. Prove that
$$
\operatorname{Pr}[Q] \leq\binom{ n}{10} \alpha^{n-10},
$$
where $\alpha::=1-(1 / 2)^{10}$.
Hint: Let S range over the size-10 subsets of players, so
$$
Q=\bigcup_{S} B_{S} .
$$

Use Boole's inequality.
(c) Conclude that if n is large enough, then $\operatorname{Pr}[Q]<1$.

Hint: Show that the limit as n approaches infinity is 0 . Why is this sufficient?
(d) Explain why the previous result implies that there is an n-player 10-neutral tournament (for a large enough $n \in \mathbb{N}$).

[^0]: (c) ©() © 2018, Albert R Meyer. This work is available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license.

