Problem Set 6

Due: April 20

Reading: Chapter 9 through 9.10: GCDs, Congruences, and Euler's Theorem

Problem 1.

Here is a game you can analyze with number theory and always beat me. We start with two distinct, positive integers written on a blackboard. Call them a and b. Now we take turns. (I'll let you decide who goes first.) On each turn, the player must write a new positive integer on the board that is the difference of two numbers that are already there. If a player cannot play, then they lose.

For example, suppose that 12 and 15 are on the board initially. Your first play must be 3 , which is $15-12$. Then I might play 9 , which is $12-3$. Then you might play 6 , which is $15-9$. Then I can't play, so I lose.
(a) Show that every number on the board at the end of the game is a multiple of $\operatorname{gcd}(a, b)$.
(b) Show that every positive multiple of $\operatorname{gcd}(a, b)$ up to $\max (a, b)$ is on the board at the end of the game.
(c) Describe a strategy that lets you win this game every time.

Problem 2.

Two nonparallel lines in the real plane intersect at a point. Algebraically, this means that the equations

$$
\begin{aligned}
& y=m_{1} x+b_{1} \\
& y=m_{2} x+b_{2}
\end{aligned}
$$

have a unique solution (x, y), provided $m_{1} \neq m_{2}$. This statement would be false if we restricted x and y to the integers, since the two lines could cross at a noninteger point:

However, an analogous statement holds if we work over the integers modulo a prime p. Find a solution to the congruences

$$
\begin{aligned}
& y \equiv m_{1} x+b_{1} \quad(\bmod p) \\
& y \equiv m_{2} x+b_{2} \quad(\bmod p)
\end{aligned}
$$

when $m_{1} \not \equiv m_{2}(\bmod p)$. Express your solution in the form $x \equiv ?(\bmod p)$ and $y \equiv ?(\bmod p)$ where the ?'s denote expressions involving m_{1}, m_{2}, b_{1} and b_{2}. You may find it helpful to solve the original equations over the reals first.

Problem 3.

In this problem we'll prove that for all integers a, m where $m>1$,

$$
\begin{equation*}
a^{m} \equiv a^{m-\phi(m)} \quad(\bmod m) . \tag{1}
\end{equation*}
$$

Note that a and m need not be relatively prime.
Assume $m=p_{1}^{k_{1}} \cdots p_{n}^{k_{n}}$ for distinct primes, p_{1}, \ldots, p_{n} and positive integers k_{1}, \ldots, k_{n}.
(a) Show that if p_{i} does not divide a, then

$$
a^{\phi(m)} \equiv 1 \quad\left(\bmod p_{i}^{k_{i}}\right) .
$$

(b) Show that if $p_{i} \mid a$ then

$$
\begin{equation*}
a^{m-\phi(m)} \equiv 0 \quad\left(\bmod p_{i}^{k_{i}}\right) . \tag{2}
\end{equation*}
$$

(c) Conclude (1) from the facts above.

Hint: $a^{m}-a^{m-\phi(m)}=a^{m-\phi(m)}\left(a^{\phi(m)}-1\right)$.

