Problem Set 1

Due: February 16

Reading:

- Chapter 1. What is a Proof?
- Chapter 3. Logical Formulas through 3.5

These assigned readings do not include the Problem sections. (Many of the problems in the text will appear as class or homework problems.)

Reminder:

- Instructions for PSet submission are on the class Stellar page. Remember that each problem should prefaced with a collaboration statement.
- The class has a Piazza forum. With Piazza you may post questions-both administrative and content related - to the entire class or to just the staff. You are likely to get faster response through Piazza than from direct email to staff.
You should post a question or comment to Piazza at least once by the end of the second week of the class; after that Piazza use is optional.

Problem 1.

Here is a generalization of Problem 1.16 that you may not have thought of:
Lemma. Let the coefficients of the polynomial

$$
a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{m-1} x^{m-1}+x^{m}
$$

be integers. Then any real root of the polynomial is either integral or irrational.
(a) Explain why the Lemma immediately implies that $\sqrt[m]{k}$ is irrational whenever k is not an m th power of some integer.
(b) Carefully prove the Lemma.

You may find it helpful to appeal to:
Fact. If a prime p is a factor of some power of an integer, then it is a factor of that integer.
You may assume this Fact without writing down its proof, but see if you can explain why it is true.

[^0]Problem 2. (a) Suppose that

$$
a+b+c=d,
$$

where a, b, c, d are nonnegative integers.
Let P be the assertion that d is even. Let W be the assertion that exactly one among a, b, c are even, and let T be the assertion that all three are even.

Prove by cases that

$$
P \text { IFF }[W \text { OR } T] .
$$

(b) Now suppose that

$$
w^{2}+x^{2}+y^{2}=z^{2},
$$

where w, x, y, z are nonnegative integers. Let P be the assertion that z is even, and let R be the assertion that all three of w, x, y are even. Prove by cases that

$$
P \text { IFF } R .
$$

Hint: An odd number equals $2 m+1$ for some integer m, so its square equals $4\left(m^{2}+m\right)+1$.

Problem 3.

Sloppy Sam is trying to prove a certain proposition P. He defines two related propositions Q and R, and then proceeds to prove three implications:

$$
P \text { implies } Q, \quad Q \text { implies } R, \quad R \text { implies } P \text {. }
$$

He then reasons as follows:
If Q is true, then since I proved (Q implies R), I can conclude that R is true. Now, since I proved (R implies P), I can conclude that P is true. Similarly, if R is true, then P is true and so Q is true. Likewise, if P is true, then so are Q and R. So any way you look at it, all three of P, Q and R are true.
(a) Exhibit truth tables for

$$
\begin{equation*}
(P \text { implies } Q) \text { and }(Q \text { implies } R) \text { and }(R \text { implies } P) \tag{*}
\end{equation*}
$$

and for

$$
\begin{equation*}
P \text { AND } Q \text { AND } R \text {. } \tag{**}
\end{equation*}
$$

Use these tables to find a truth assignment for P, Q, R so that $\left({ }^{*}\right)$ is \mathbf{T} and $\left(^{(* *}\right)$ is \mathbf{F}.
(b) You show these truth tables to Sloppy Sam and he says "OK, I'm wrong that P, Q and R all have to be true, but I still don't see the mistake in my reasoning. Can you help me understand my mistake?" How would you explain to Sammy where the flaw lies in his reasoning?

[^0]: © © © 2017, Albert R Meyer. This work is available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license.

