Mathematics for Computer Science 6.042J/18.062J
 Propositional Algebra

6	9	13	7
12		10	5

12		10	5
3	1	4	14

Algebra for Equivalence
Use an algebra of equivalence to prove formulas equivalent.

Proving Equivalence
and the rules are complete:
if two formulas are \equiv, these rules can prove it.


```
Come up with enough equivalence rules to convert any formula to an equivalent canonical DNF.
```

Algebra for Equivalence
Rules for XOR, IMPLIES
PIMPLIES $Q \equiv \operatorname{NOT}(P)$ OR Q
$P \times O R Q \equiv(\operatorname{NOT}(P) A N D Q) O R$ (NOT(Q) AND P)
Just leaves AND, OR, NOT
*)
Rules for XOR, IMPLIES
PIMPLIES Q \equivNOT(P)ORQ
P XORQ \equiv(NOT(P) AND Q)OR
(NOT(Q) AND P)

```

\section*{\begin{tabular}{|c|c|c|c|}
\hline 6 & 9 & 13 & 7 \\
\hline 12 & & 10 & 5 \\
\hline & & & \\
\hline
\end{tabular}}
\begin{tabular}{|l|l|lll|}
\hline 12 & & 10 & \\
\hline 3 & 1 & 4 & 14 \\
\hline 15 & & 11 & \\
\hline
\end{tabular}
Strategy: Convert to DNF Come up with enough equivalence rules to convert any formula to an equivalent canonical DNF. Two formulas are equiv when convert to same canonical DNF.

Algebra for Equivalence
Double Negation \(\operatorname{NOT}(\operatorname{NOT}(P)) \equiv P\)

example
converting to a sum of products
\begin{tabular}{|c|c|c|c|}
\hline 6 & 9 & 13 & 7 \\
\hline 12 & & 10 & 5 \\
\hline & & & \\
\hline
\end{tabular}

DeMorgan's law -OR
NOT(P OR Q) \(\equiv\) NOT(P) AND NOT(Q)
Rewrite left to right until NOT's only on variables


\section*{\begin{tabular}{|c|c|c|c|}
\hline 6 & 9 & 13 & 7 \\
\hline 12 & & 10 & 5 \\
\hline
\end{tabular} \\  \\ NOT[NOT(PORQ) OR (RaNDQ)] \\ \(\operatorname{Not[NOT(PORQ)]AND~NOT(RaNDQ)~}\) \\ ©(1) A®0 Albert R Meyer \(\quad\) February 14, 2018 \(\quad\) propositional algebra. 14}


NOT[ NOT(POR Q)] AND NOT(R AND Q)
    Double NOT


Done move NOTs down to literals \begin{tabular}{|c|c|c|c|}
\hline 6 & 9 & 13 & 7 \\
\hline 12 & 10 & 5 \\
\hline 3 & 1 & 4 & 5 \\
\hline 15 & 8 & 11 & 2 \\
\hline
\end{tabular}
\(\ddot{\because-1 \cdot \cdot \cdot-~}\)
( \(\mathrm{P} \circ \mathrm{RQ}\) ) AND \((\bar{R} \circ R \bar{Q})\)
©(®)(

Algebra for Equivalence Distributive Law
\(P \cdot(Q+R) \equiv\)
\[
(P \cdot Q)+(P \cdot R)
\]


\section*{\begin{tabular}{|c|c|c|c|}
\hline 6 & 9 & 13 & 7 \\
\hline 12 & & 10 & 5 \\
\hline & & & 4 \\
\hline
\end{tabular} \begin{tabular}{|c|c|cc|}
\hline 12 & & 10 & 5 \\
\hline 3 & 1 & 4 & 14 \\
\hline & & & \\
\hline
\end{tabular} \\ Get Sum of Products \\ ( \(\mathrm{P} O R Q\) ) AND ( \(\bar{R} \circ R \bar{Q}\) ) \\ ((PORQ)AND \(\bar{R})\) OR \\ ((PORQ) AND \(\bar{Q})\)}
\begin{tabular}{|c|c|c|c|}
\hline 6 & 9 & 13 & 7 \\
\hline 12 & & 10 & 5 \\
\hline 3 & 1 & 4 & 14 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 12 & & 10 & 5 \\
\hline 3 & 1 & 4 & 14 \\
\hline & & & & \\
\hline
\end{tabular}
Get Sum of Products
( \(P\) ORQ) AND ( \(\bar{R} O R \bar{Q}\) )
Distribute ( P OR Q)


```

Get Sum of Products
(PAND $\bar{R})$ OR(Q AND $\bar{R})$ OR ((PORQ) AND $\bar{Q})$ Distribute \bar{Q}

* 6
|(2)
l:llll

\section*{| 6 | 9 | 13 | 7 |
| :--- | :--- | :--- | :--- |
| 12 | | 10 | 5 |
 | 12 | | 10 | 5 | |
| :---: | :---: | :---: | :---: | :---: |
| 3 | 1 | 4 | 14 | |
| | | | | 1 |}

Get Sum of Products ((PORQ) AND $\bar{R})$ OR ((PORQ) AND $\bar{Q})$
(PAND $\bar{R})$ OR(QAND $\bar{R}) O R$ ((PORQ) AND $\bar{Q})$

6	9	13	7					
12		10	5					
	1				12		10	5
:---:	:---:	:---:	:---:					
3	1	4	14					
			11		15	8	11	2
:---	:---	:---	:---					

Get Sum of Products
(P AND $\bar{R})$ OR(Q AND $\bar{R})$ OR ((PORQ) AND $\bar{Q})$
($\operatorname{PAND} \bar{R}$) OR (Q AND $\bar{R})$ OR
(P AND \bar{Q}) OR (Q AND $\bar{Q})$

\section*{| 6 | ${ }^{13}{ }^{13}$ |
| :---: | :---: |
 Done: Sum of Products}

(P AND $\bar{R})$ OR (Q AND $\bar{R})$ OR (P AND $\overline{\mathrm{Q}}$) OR(Q AND $\overline{\mathrm{Q}})$

\section*{ | 12 | 10 | 10 | |
| :---: | :---: | :---: | :---: |
| 3 | 1 | 4 | 14 |
| | | | 11 |
 Simplification rules
 Q OR T \equiv T
 QANDT $\equiv \mathbf{Q}$
 P ORF $\equiv P$
 PANDF $\equiv \mathrm{F}$}

6	9	13	7
1			

Simplification rules

$$
\begin{aligned}
Q \text { OR } Q & \equiv Q \\
\text { Q OR } Q & \equiv \text { True } \\
\text { QAND } Q & \equiv Q \\
\bar{Q} \text { AND } Q & \equiv \text { False }
\end{aligned}
$$

(1)(3) Albert R Mever

February 14, 2018
propositional algebra. 30

\section*{| 6 | 9 | 13 | 7 |
| :---: | :---: | :---: | :---: |
| 12 | | 10 | 5 |
| | 1 | | | | 12 | | 10 | 5 |
| :---: | :---: | :---: | :---: |
| 3 | 1 | 4 | 14 |
| | | 1 | 2 |}

example
(P AND $\overline{\mathrm{R}}$) OR(Q AND $\overline{\mathrm{R}})$ OR (P AND \bar{Q})

Simplify

```
|6
```

*

```
```

*

```
```

*3

```
```

*3

```
example
( P AND \(\overline{\mathrm{R}}\) ) OR (Q AND \(\overline{\mathrm{R}})\) OR
        (P AND \(\bar{Q})\) OR(False)
                        Simplify

\section*{\begin{tabular}{l|l|l|l|}
\hline 6 & 9 & 13 & 7 \\
\hline 12 & & 10 & 5 \\
\hline
\end{tabular}}
we have DNF!
( P AND \(\overline{\mathrm{R}}\) ) OR(Q AND \(\overline{\mathrm{R}})\) OR(P AND \(\bar{Q})\) now to get Full DNF:
(P AND \(\bar{R})\) OR (Q AND \(\bar{R})\) OR (P AND \(\bar{Q}\) ) OR(False) Simplify
```

[9쀼ᄋ%
*12
Full DNF for an AND-term
(PAND\overline{R}) unsimplify
(PAND\overline{R})AND (QOR\overline{Q})

四
 (P AND \bar{R})
 (P AND $\overline{\mathrm{R}}$ AND Q) OR (P AND $\overline{\mathrm{R}} A \mathrm{ND} \overline{\mathrm{Q}}$)

6	9	13	7
12		10	5

Full DNF for an AND-term
(P AND $\overline{\mathrm{R}}$)
(P AND $\bar{R})$ AND $(Q O R \bar{Q})$ distribute (P AND $\overline{\mathrm{R}}$ ANDQ) OR
($\mathrm{PAND} \overline{\mathrm{R}} A N D \bar{Q}$)
(1) (1)($)$ Albert R Meyer February 14,2018

6	9	13	7					
12		10	5		12		10	5
:---:	:---:	:---:	:---:					
3	1	4	14					
		1		Rearrangement rules PAND $Q \equiv$ Q AND P (P AND Q) AND $\mathrm{R} \equiv$ (P AND Q AND R) ...likewise for OR				

6	9	13	7
12		10	5
3	1	4	14
15	8	11	2

same for each AND-term, and $O R$ them together:
(PaNDQAND\overline{R})OR (PaNDQAND\overline{R})OR
(PaNDQAND\overline{R})OR (PaNDQAND\overline{R})OR
(PAND\overline{QAND\overline{R})OR (\overline{PANDQAND\overline{R}) OR}}\mathbf{O}=(P)
(PAND\overline{QAND\overline{R})OR (\overline{PANDQAND\overline{R}) OR}}\mathbf{O}=(P)
(P AND Q̄and R) OR
(P AND Q̄and R) OR
(P AND\overline{Q}AND \overline{R})
(P AND\overline{Q}AND \overline{R})

```
|(15]
M, 10, %
    simplify (duplicates)
    (P ANDQaND\overline{R})OR (PAINOQAND\overline{R})OR
```



```
        (P AND \overline{Q AND R)OR}
        (and\overline{R})
                            February 14, 2018
\begin{tabular}{|c|c|c|c|}
\hline 6 & 9 & 13 & 7 \\
\hline 12 & & 10 & 5 \\
\hline
\end{tabular}
example
simplify (duplicates)
(P AND Qand \(\overline{\mathrm{R}})\) OR (PANDQAND \(\overline{\mathrm{R}})\) OR
(Pand \(\bar{Q} a n d \bar{R}) \quad O R(\bar{P} A N D Q a n d \bar{R}) \quad O R\)
( P AND \(\overline{\mathrm{Q}}\) and R) or
( \(\operatorname{PAND} \bar{Q} A N D \bar{R}\) )

February 14,2018

\section*{\begin{tabular}{|c|c|c|c|}
\hline 6 & 9 & 13 & 7 \\
\hline 12 & & 10 & 5 \\
\hline & & \\
\hline
\end{tabular} \\ \begin{tabular}{|c|c|cc|c|}
\hline 12 & & 10 & 5 \\
\hline 3 & 1 & 4 & 14 \\
\hline & & & & 1 \\
\hline
\end{tabular} \\ \begin{tabular}{c|c|cc|}
\hline 3 & 1 & 4 & 14 \\
\hline 15 & 8 & 11 & 2 \\
\hline
\end{tabular}}
example
also sort the clauses
(P AND QAND \(\bar{R})\) OR
( \(\operatorname{PAND} \bar{Q} A N D \bar{R}) \quad\) OR ( \(\bar{P}\) AND QAND \(\bar{R}) \quad O R\)
( P AND \(\overline{\mathrm{Q}}\) AND R )

\section*{ \\ ( P AND Q AND \(\bar{R}\) ) OR ( P AND \(\bar{Q}\) ANDR) OR ( P AND \(\bar{Q}\) AND \(\bar{R}\) )OR ( \(\bar{P}\) AND Q AND \(\bar{R})\) \\ Done Sorted Full DNF unique for each formula}

Thm. These rules are complete: if two formulas are \(\equiv\), these rules can prove it.

\footnotetext{
(1)(2) Albert R Meyer

February 14, 2018 propositional algebra. 50
}

Algebra for Equivalence
Because two formulas are equivalent iff have same truth table

Algebra for Equivalence
Because two formulas are equivalent iff have same truth table iff have same canonical DNF.

\section*{ \\ Algebraic proofs in general don't beat truth tables. The canonical DNF is just a copy of the truth table as an algebraic formula.}

Algebraic proofs in general don't beat truth tables.
\begin{tabular}{l|l|l|}
\hline 6 & 9 & 13 \\
\hline & & 7 \\
\hline
\end{tabular}

Algebraic proofs in general don't beat truth tables. No efficient method known for equivalence or validity.```

