\section*{| 6 | 9 | 13 | 7 |
| :---: | :---: | :---: | :---: |
| 12 | | 10 | 5 |
| | | | | | 12 | | 10 | | |
| :--- | :--- | :--- | :--- | :--- |
| 3 | 1 | 4 | 14 | |
| 1 | | | | | | 3 | 1 | 4 | 14 |
| :---: | :---: | :---: | :---: |
| 15 | 8 | 11 | 2 | \\ Mathematics for Computer Science 6.042J/18.062J \\ PROOFS, II}

\section*{| 6 | 9 | 13 | 7 |
| :---: | :---: | :---: | :---: |
| 12 | | 10 | 5 | \\ | 12 | | 10 | 5 |
| :---: | :---: | :---: | :---: |
| 3 | 1 | 4 | 14 |
| | | | 11 | | 35 | 8 | 11 | |
| :--- | :--- | :--- | :--- |
| 15 | | | | \\ Another Bogus Proof}

Counter-examples:

$$
0 x^{2}+0 x+1 \text { has } 0 \text { roots }
$$

$$
0 x^{2}+1 x+1 \text { has } 1 \text { root }
$$

The bug: divide by zero error
The fix: require $a \neq 0$

```
*6
*)
    Theorem: Every polynomial,
        ax +bx+c
        has two roots over \mathbb{C}
Proof (by calculation). The roots are:
    r}::=\frac{-b+\sqrt{}{\mp@subsup{b}{}{2}-4ac}}{2a}\mathrm{ and }\mp@subsup{r}{2}{}::=\frac{-b-\sqrt{}{\mp@subsup{b}{}{2}-4ac}}{2a
(c) (1) () Albert R. Meyer, 2015

\section*{\begin{tabular}{|c|c|c|c|}
\hline 6 & 9 & 13 & 7 \\
\hline 12 & & 10 & 5 \\
\hline 3 & & 4 \\
\hline
\end{tabular} \\ \begin{tabular}{|l|l|l|l|}
\hline 12 & & 10 & 5 \\
\hline 3 & 1 & 4 & 14 \\
\hline
\end{tabular} \\ \begin{tabular}{|c|c|c|c|}
\hline 12 & & 10 & \\
\hline \(\mathbf{3}\) & 1 & 4 & 14 \\
\hline 15 & 8 & 11 & 2 \\
\hline
\end{tabular} \\ Another Bogus Proof \\ Counter-example: \\ \[
1 x^{2}+0 x+0 \text { has } 1 \text { root. }
\]}

The bug:
\[
r_{1}=r_{2}
\]

The fix: require \(D \neq 0\) where
\[
D::=b^{2}-4 a c
\]
```

*6
M,
What if D < 0?
x}+1\mathrm{ has roots i,-i
--ambiguous which is }\mp@subsup{r}{1}{
and which is }\mp@subsup{r}{2}{}\mathrm{ ?

```
|6
*12
Consequences of 1=-1
    \frac{1}{2}=-\frac{1}{2}\quad(multiply by }\frac{1}{2}
    2=1 (add \frac{3}{2})
    'Since I and the Pope are clearly 2,
    we conclude that I and the Pope are 1.
    That is, I am the Pope.'
-- Bertrand Russell
```


ambiguity can cause problems:
$1=\sqrt{1}=\sqrt{(-1)(-1)}=\sqrt{-1} \sqrt{-1}=(\sqrt{-1})^{2}=-1$
Moral:

1. Be sure rules are properly applied.
2. Thoughtless calculation no substitute for understanding.

