(6) 1107 Mathematics for Computer Science 6.042J/18.062J
 PROOFS, I
 cc) (i) () Albert R. Meyer, 2015 Sptember 92015

Rearrange into:
(i) a c $\times c$ square, and then
(ii) $a n a \times a$ \& $a b \times b$ square

\section*{	6	9	13
12	10		
	10	5	 A Cool Proof}

$$
c \times c \text { square }
$$

(c) (i) () Albert R. Meyer, 2015

\section*{| 6 | 9^{13} | 7 |
| :---: | :---: | :---: |
| 12 | | 10 |
 | 12 | | 10 | 5 |
| :---: | :---: | :---: | :---: |
| 3 | 1 | 4 | 14 |
| | | | 1 |
 A Cool Proof}

(c) (1) () Albert R. Meyer, 2015

September 92015
proof-intro.I. 9

6	9	13	7
12		10	5
		4	

- elegant and correct --in this case
- worrisome in general
--hidden assumptions
(c) (i) ©) Albert R. Meyer. $2015 \quad$ September9 2015 proof-intro.T.11


```
Mas
Lots of good examples,
    for example:
    Gardner, Martin
    Mathematics, Magic and Mystery
    (Dover, 1956, 12 + 176)
    http://store.doverpublications.com/0486203352.html
    or https://en.m.wikipedia.org/wiki/Missing_square_puzzle
(c) () () Abert R.Mever, 2015```

