

Mathematics for Computer Science
MIT 6.042J/18.062J

Monty Hall Conditional Probability often confusing

@(1) ${ }^{10}$
Albert R Meyer, May 3, 2013

Pr[prize at 1 | goat at 2]
$=\frac{1}{2} \quad$ Really!

Stick or Switch?

Seems the contestant may as well stick, since the probability is $1 / 2$ given what he knows when he chooses. Wait! contestant knows more than what door he picked \& where a goat is, he knows

```
what door Carol opened!
```

@(1)

Albert R Meyer, May 3, 2013

a! Conditional Probability: Monty Hall
 $\operatorname{Pr}[$ prize at $1 \mid$ picked 1 \&
 opened 2]
 [picked $1 \&$ opened 2$]=$

 COBO Albert R Meyer, May 3, 2013

$$
\begin{aligned}
& \text { Conditional Probability: Monty Hall } \\
& \begin{array}{c}
\operatorname{Pr}[\text { prize at } 1 \mid \text { picked } 1 \& \\
\text { opened } 2] \\
=\frac{1 / 18}{1 / 18+1 / 9}=\frac{1}{3} \\
=\operatorname{Pr}[\text { sticking wins] }
\end{array}
\end{aligned}
$$

```
Stick or Switch?
Pr[prize at 1 | picked 1 &
            opened 2]
\[
\begin{aligned}
& =\frac{1 / 18}{1 / 18+1 / 9}=\frac{1}{3} \\
& =\operatorname{Pr}[\text { sticking wins }]
\end{aligned}
\]
\[
\text { @(1)(O)} \quad \text { Albert R Meyer, May 3, } 2013 \quad \text { condmonty } 33
\]
```

Switch!
By conditioning on everything
the contestant knows, we've
finally confirmed what we
learned earlier:
$\operatorname{Pr}\left[\right.$ switching wins] $=\frac{2}{3}$
\quad The 4 Step Method
It's easy to see how so many
smart people get confused by
Monty Hall. Finding the right
event to condition on can be
tricky.
\quad The 4 Step Method
It's easy to see how so many
smart people get confused by
Monty Hall. Finding the right
event to condition on can be
tricky. The 4 step method
is a good fall back approach.

