

Mutually

 Independent EventsMutual Independence Events $A_{1}, A_{2}, \ldots, A_{n}$ are mutually independent when the probability that A_{i} occurs
©(8) Albert R Meyer, May 3, 2013 mutualindep. 2
Mutual Independence
Events $A_{1}, A_{2}, \ldots, A_{n}$ are
mutually independent
when
$\operatorname{Pr}\left[A_{i}\right]=\operatorname{Pr}\left[A_{i} \mid A_{j} \cap A_{k} \cap \cdots \cap A_{m}\right]$
$\quad(i \neq j, k, \ldots, m)$
Pairwise Independence
Example: Flip a fair coin twice
$H_{1}::=\left[\right.$ Head on $\left.1^{\text {st f flip }}\right]$
$H_{2}::=\left[\right.$ Head on $2^{\text {nd }}$ flip]
$O:=[$ Odd \# Heads]
Claim: O is independent of H_{1}

Mutual Independence

 Events $A_{1}, A_{2}, \ldots, A_{n}$ are mutually independent when$$
\begin{aligned}
& \operatorname{Pr}\left[A_{i} \cap A_{j} \cap \cdots \cap A_{m}\right]= \\
& \operatorname{Pr}\left[A_{i}\right] \cdot \operatorname{Pr}\left[A_{j}\right] \cdots \operatorname{Pr}\left[A_{m}\right]
\end{aligned}
$$

```
Nat Mutually Independent
    Example: Flip a fair coin twice
        But O, H1, H2 not mutually
        independent:
    Pr[O|H
```

K-way Independence
Example: Flip a fair coin k times
H
O ::= [Odd \# Heads]
Claim: Any set of k of these events are mutually independent, but all $k+1$ of them are not.

k-way Independence

Events A_{1}, A_{2}, \ldots are
k -way independent
iff any k of them are mutually independent.
$\mathrm{O}, \mathrm{H}_{1}, \ldots, H_{k}$ are k-way, not ($k+1$)-way independent

```
Mutual Independence
    Events }\mp@subsup{A}{1}{},\mp@subsup{A}{2}{},\ldots,\mp@subsup{A}{n}{}\mathrm{ are
        mutually independent
    when they are n-way independent
    [l}\begin{array}{l}{\mp@subsup{2}{}{n}-(n+1) equations}\\{\mathrm{ to check!}}\end{array}
@(1)(0
    Albert R Meyer, May 3,2013
```

